語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Real-time knowledge-based fuzzy logi...
~
Sidhu, Amandeep S.
Real-time knowledge-based fuzzy logic model for soft tissue deformation
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Real-time knowledge-based fuzzy logic model for soft tissue deformationby Joey Sing Yee Tan, Amandeep S. Sidhu.
作者:
Tan, Joey Sing Yee.
其他作者:
Sidhu, Amandeep S.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
ix, 88 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Fuzzy logic.
電子資源:
https://doi.org/10.1007/978-3-030-15585-8
ISBN:
9783030155858$q(electronic bk.)
Real-time knowledge-based fuzzy logic model for soft tissue deformation
Tan, Joey Sing Yee.
Real-time knowledge-based fuzzy logic model for soft tissue deformation
[electronic resource] /by Joey Sing Yee Tan, Amandeep S. Sidhu. - Cham :Springer International Publishing :2019. - ix, 88 p. :ill., digital ;24 cm. - Data, semantics and cloud computing,v.8322524-6593 ;. - Data, semantics and cloud computing ;v.832..
List of Figures -- List of Tables -- Chapter 1. Introduction -- Chapter 2. Background -- Chapter 3. Methodology -- Chapter 4. Fuzzy Inference System, etc.
This book provides a real-time and knowledge-based fuzzy logic model for soft tissue deformation. The demand for surgical simulation continues to grow, as there is a major bottleneck in surgical simulation designation and every patient is unique. Deformable models, the core of surgical simulation, play a crucial role in surgical simulation designation. Accordingly, this book (1) presents an improved mass spring model to simulate soft tissue deformation for surgery simulation; (2) ensures the accuracy of simulation by redesigning the underlying Mass Spring Model (MSM) for liver deformation, using three different fuzzy knowledge-based approaches to determine the parameters of the MSM; (3) demonstrates how data in Central Processing Unit (CPU) memory can be structured to allow coalescing according to a set of Graphical Processing Unit (GPU)-dependent alignment rules; and (4) implements heterogeneous parallel programming for the distribution of grid threats for Computer Unified Device Architecture (CUDA)-based GPU computing.
ISBN: 9783030155858$q(electronic bk.)
Standard No.: 10.1007/978-3-030-15585-8doiSubjects--Topical Terms:
181981
Fuzzy logic.
LC Class. No.: QA9.64
Dewey Class. No.: 511.313
Real-time knowledge-based fuzzy logic model for soft tissue deformation
LDR
:02270nmm a2200337 a 4500
001
554667
003
DE-He213
005
20190406141354.0
006
m d
007
cr nn 008maaau
008
191118s2019 gw s 0 eng d
020
$a
9783030155858$q(electronic bk.)
020
$a
9783030155841$q(paper)
024
7
$a
10.1007/978-3-030-15585-8
$2
doi
035
$a
978-3-030-15585-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA9.64
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
511.313
$2
23
090
$a
QA9.64
$b
.T161 2019
100
1
$a
Tan, Joey Sing Yee.
$3
836450
245
1 0
$a
Real-time knowledge-based fuzzy logic model for soft tissue deformation
$h
[electronic resource] /
$c
by Joey Sing Yee Tan, Amandeep S. Sidhu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
ix, 88 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Data, semantics and cloud computing,
$x
2524-6593 ;
$v
v.832
505
0
$a
List of Figures -- List of Tables -- Chapter 1. Introduction -- Chapter 2. Background -- Chapter 3. Methodology -- Chapter 4. Fuzzy Inference System, etc.
520
$a
This book provides a real-time and knowledge-based fuzzy logic model for soft tissue deformation. The demand for surgical simulation continues to grow, as there is a major bottleneck in surgical simulation designation and every patient is unique. Deformable models, the core of surgical simulation, play a crucial role in surgical simulation designation. Accordingly, this book (1) presents an improved mass spring model to simulate soft tissue deformation for surgery simulation; (2) ensures the accuracy of simulation by redesigning the underlying Mass Spring Model (MSM) for liver deformation, using three different fuzzy knowledge-based approaches to determine the parameters of the MSM; (3) demonstrates how data in Central Processing Unit (CPU) memory can be structured to allow coalescing according to a set of Graphical Processing Unit (GPU)-dependent alignment rules; and (4) implements heterogeneous parallel programming for the distribution of grid threats for Computer Unified Device Architecture (CUDA)-based GPU computing.
650
0
$a
Fuzzy logic.
$3
181981
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Biomedical Engineering and Bioengineering.
$3
826326
650
2 4
$a
Surgery.
$3
274153
650
2 4
$a
Regenerative Medicine/Tissue Engineering.
$3
675875
700
1
$a
Sidhu, Amandeep S.
$3
375720
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Data, semantics and cloud computing ;
$v
v.832.
$3
836451
856
4 0
$u
https://doi.org/10.1007/978-3-030-15585-8
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000167529
電子館藏
1圖書
電子書
EB QA9.64 .T161 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-15585-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入