語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Singular integrals and Fourier theor...
~
Li, Pengtao.
Singular integrals and Fourier theory on Lipschitz boundaries
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Singular integrals and Fourier theory on Lipschitz boundariesby Tao Qian, Pengtao Li.
作者:
Qian, Tao.
其他作者:
Li, Pengtao.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
xv, 306 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Lipschitz spaces.
電子資源:
https://doi.org/10.1007/978-981-13-6500-3
ISBN:
9789811365003$q(electronic bk.)
Singular integrals and Fourier theory on Lipschitz boundaries
Qian, Tao.
Singular integrals and Fourier theory on Lipschitz boundaries
[electronic resource] /by Tao Qian, Pengtao Li. - Singapore :Springer Singapore :2019. - xv, 306 p. :ill. (some col.), digital ;24 cm.
Singular integrals and Fourier multipliers on infinite Lipschitz curves -- Singular integral operators on closed Lipschitz curves -- Clifford analysis, Dirac operator and the Fourier transform -- Convolution singular integral operators on Lipschitz surfaces -- Holomorphic Fourier multipliers on infinite Lipschitz surfaces -- Bounded holomorphic Fourier multipliers on closed Lipschitz surfaces -- The fractional Fourier multipliers on Lipschitz curves and surfaces -- Fourier multipliers and singular integrals on Cn.
The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.
ISBN: 9789811365003$q(electronic bk.)
Standard No.: 10.1007/978-981-13-6500-3doiSubjects--Topical Terms:
558259
Lipschitz spaces.
LC Class. No.: QA323
Dewey Class. No.: 515.73
Singular integrals and Fourier theory on Lipschitz boundaries
LDR
:02539nmm a2200325 a 4500
001
554724
003
DE-He213
005
20190320141603.0
006
m d
007
cr nn 008maaau
008
191118s2019 si s 0 eng d
020
$a
9789811365003$q(electronic bk.)
020
$a
9789811364990$q(paper)
024
7
$a
10.1007/978-981-13-6500-3
$2
doi
035
$a
978-981-13-6500-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA323
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBK
$2
thema
082
0 4
$a
515.73
$2
23
090
$a
QA323
$b
.Q1 2019
100
1
$a
Qian, Tao.
$3
758709
245
1 0
$a
Singular integrals and Fourier theory on Lipschitz boundaries
$h
[electronic resource] /
$c
by Tao Qian, Pengtao Li.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xv, 306 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Singular integrals and Fourier multipliers on infinite Lipschitz curves -- Singular integral operators on closed Lipschitz curves -- Clifford analysis, Dirac operator and the Fourier transform -- Convolution singular integral operators on Lipschitz surfaces -- Holomorphic Fourier multipliers on infinite Lipschitz surfaces -- Bounded holomorphic Fourier multipliers on closed Lipschitz surfaces -- The fractional Fourier multipliers on Lipschitz curves and surfaces -- Fourier multipliers and singular integrals on Cn.
520
$a
The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.
650
0
$a
Lipschitz spaces.
$3
558259
650
0
$a
Fourier analysis.
$3
184626
650
1 4
$a
Analysis.
$3
273775
700
1
$a
Li, Pengtao.
$3
836552
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-6500-3
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000167586
電子館藏
1圖書
電子書
EB QA323 .Q1 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-6500-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入