語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Schrodinger equations in nonlinear s...
~
Kengne, Emmanuel.
Schrodinger equations in nonlinear systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Schrodinger equations in nonlinear systemsby Wu-Ming Liu, Emmanuel Kengne.
作者:
Liu, Wu-Ming.
其他作者:
Kengne, Emmanuel.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
xvi, 569 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Gross-Pitaevskii equations.
電子資源:
https://doi.org/10.1007/978-981-13-6581-2
ISBN:
9789811365812$q(electronic bk.)
Schrodinger equations in nonlinear systems
Liu, Wu-Ming.
Schrodinger equations in nonlinear systems
[electronic resource] /by Wu-Ming Liu, Emmanuel Kengne. - Singapore :Springer Singapore :2019. - xvi, 569 p. :ill. (some col.), digital ;24 cm.
This book explores the diverse types of Schrodinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose-Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrodinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose-Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrodinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose-Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures.
ISBN: 9789811365812$q(electronic bk.)
Standard No.: 10.1007/978-981-13-6581-2doiSubjects--Topical Terms:
715984
Gross-Pitaevskii equations.
LC Class. No.: QC174.26.W28
Dewey Class. No.: 530.124
Schrodinger equations in nonlinear systems
LDR
:02321nmm a2200313 a 4500
001
554823
003
DE-He213
005
20190320190757.0
006
m d
007
cr nn 008maaau
008
191118s2019 si s 0 eng d
020
$a
9789811365812$q(electronic bk.)
020
$a
9789811365805$q(paper)
024
7
$a
10.1007/978-981-13-6581-2
$2
doi
035
$a
978-981-13-6581-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.26.W28
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHU
$2
thema
082
0 4
$a
530.124
$2
23
090
$a
QC174.26.W28
$b
L783 2019
100
1
$a
Liu, Wu-Ming.
$3
836707
245
1 0
$a
Schrodinger equations in nonlinear systems
$h
[electronic resource] /
$c
by Wu-Ming Liu, Emmanuel Kengne.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xvi, 569 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
520
$a
This book explores the diverse types of Schrodinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose-Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrodinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose-Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrodinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose-Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures.
650
0
$a
Gross-Pitaevskii equations.
$3
715984
650
1 4
$a
Mathematical Methods in Physics.
$3
273796
650
2 4
$a
Mathematical Physics.
$3
522725
650
2 4
$a
Condensed Matter Physics.
$3
376278
650
2 4
$a
Applications of Nonlinear Dynamics and Chaos Theory.
$3
760027
700
1
$a
Kengne, Emmanuel.
$3
836708
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-6581-2
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000167685
電子館藏
1圖書
電子書
EB QC174.26.W28 L783 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-6581-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入