語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
PySpark SQL Recipeswith HiveQL, Data...
~
Mishra, Raju Kumar.
PySpark SQL Recipeswith HiveQL, Dataframe and Graphframes /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
PySpark SQL Recipesby Raju Kumar Mishra, Sundar Rajan Raman.
其他題名:
with HiveQL, Dataframe and Graphframes /
作者:
Mishra, Raju Kumar.
其他作者:
Raman, Sundar Rajan.
出版者:
Berkeley, CA :Apress :2019.
面頁冊數:
xxiv, 323 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Python (Computer program language)
電子資源:
https://doi.org/10.1007/978-1-4842-4335-0
ISBN:
9781484243350$q(electronic bk.)
PySpark SQL Recipeswith HiveQL, Dataframe and Graphframes /
Mishra, Raju Kumar.
PySpark SQL Recipes
with HiveQL, Dataframe and Graphframes /[electronic resource] :by Raju Kumar Mishra, Sundar Rajan Raman. - Berkeley, CA :Apress :2019. - xxiv, 323 p. :ill., digital ;24 cm.
Chapter 1: Introduction to PySparkSQL -- Chapter 2: Some time with Installation -- Chapter 3: IO in PySparkSQL -- Chapter 4 : Operations on PySparkSQL DataFrames -- Chapter 5 : Data Merging and Data Aggregation using PySparkSQL -- Chapter 6: SQL, NoSQL and PySparkSQL -- Chapter 7: Structured Streaming -- Chapter 8 : Optimizing PySparkSQL -- Chapter 9 : GraphFrames.
Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code. PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You'll also discover how to solve problems in graph analysis using graphframes. On completing this book, you'll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases. You will: Understand PySpark SQL and its advanced features Use SQL and HiveQL with PySpark SQL Work with structured streaming Optimize PySpark SQL Master graphframes and graph processing.
ISBN: 9781484243350$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-4335-0doiSubjects--Topical Terms:
215247
Python (Computer program language)
LC Class. No.: QA76.73.P98
Dewey Class. No.: 005.133
PySpark SQL Recipeswith HiveQL, Dataframe and Graphframes /
LDR
:02382nmm a2200325 a 4500
001
554896
003
DE-He213
005
20190318184219.0
006
m d
007
cr nn 008maaau
008
191118s2019 cau s 0 eng d
020
$a
9781484243350$q(electronic bk.)
020
$a
9781484243343$q(paper)
024
7
$a
10.1007/978-1-4842-4335-0
$2
doi
035
$a
978-1-4842-4335-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.73.P98
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
005.133
$2
23
090
$a
QA76.73.P98
$b
M678 2019
100
1
$a
Mishra, Raju Kumar.
$3
803938
245
1 0
$a
PySpark SQL Recipes
$h
[electronic resource] :
$b
with HiveQL, Dataframe and Graphframes /
$c
by Raju Kumar Mishra, Sundar Rajan Raman.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
xxiv, 323 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction to PySparkSQL -- Chapter 2: Some time with Installation -- Chapter 3: IO in PySparkSQL -- Chapter 4 : Operations on PySparkSQL DataFrames -- Chapter 5 : Data Merging and Data Aggregation using PySparkSQL -- Chapter 6: SQL, NoSQL and PySparkSQL -- Chapter 7: Structured Streaming -- Chapter 8 : Optimizing PySparkSQL -- Chapter 9 : GraphFrames.
520
$a
Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code. PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You'll also discover how to solve problems in graph analysis using graphframes. On completing this book, you'll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases. You will: Understand PySpark SQL and its advanced features Use SQL and HiveQL with PySpark SQL Work with structured streaming Optimize PySpark SQL Master graphframes and graph processing.
650
0
$a
Python (Computer program language)
$3
215247
650
0
$a
SPARK (Computer program language)
$3
803939
650
0
$a
Big data.
$3
609582
650
1 4
$a
Big Data.
$3
760530
650
2 4
$a
Open Source.
$3
758930
650
2 4
$a
Python.
$3
763308
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
274102
700
1
$a
Raman, Sundar Rajan.
$3
836826
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4335-0
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000167758
電子館藏
1圖書
電子書
EB QA76.73.P98 M678 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-1-4842-4335-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入