語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Joint models of neural and behaviora...
~
Forstmann, Birte U.
Joint models of neural and behavioral data
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Joint models of neural and behavioral databy Brandon M. Turner, Birte U. Forstmann, Mark Steyvers.
作者:
Turner, Brandon M.
其他作者:
Forstmann, Birte U.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xiii, 109 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Cognitive science.
電子資源:
https://doi.org/10.1007/978-3-030-03688-1
ISBN:
9783030036881$q(electronic bk.)
Joint models of neural and behavioral data
Turner, Brandon M.
Joint models of neural and behavioral data
[electronic resource] /by Brandon M. Turner, Birte U. Forstmann, Mark Steyvers. - Cham :Springer International Publishing :2019. - xiii, 109 p. :ill., digital ;24 cm. - Computational approaches to cognition and perception,2510-1889. - Computational approaches to cognition and perception..
Chapter 1. Motivation -- Chapter 2. A Tutorial on Joint Modeling -- Chapter 3. Assessing Model Performance with Generalization Tests -- Chapter 4. Applications -- Chapter 5. Future Directions -- Chapter 6. Other Approaches.
This book presents a flexible Bayesian framework for combining neural and cognitive models. Traditionally, studies in cognition and cognitive sciences have been done by either observing behavior (e.g., response times, percentage correct, etc.) or by observing neural activity (e.g., the BOLD response). These two types of observations have traditionally supported two separate lines of study, which are led by two different cognitive modelers. Joining neuroimaging and computational modeling in a single hierarchical framework allows the neural data to influence the parameters of the cognitive model and allows behavioral data to constrain the neural model. This Bayesian approach can be used to reveal interactions between behavioral and neural parameters, and ultimately, between neural activity and cognitive mechanisms. Chapters demonstrate the utility of this Bayesian model with a variety of applications, and feature a tutorial chapter where the methods can be applied to an example problem. The book also discusses other joint modeling approaches and future directions. Joint Models of Neural and Behavioral Data will be of interest to advanced graduate students and postdoctoral candidates in an academic setting as well as researchers in the fields of cognitive psychology and neuroscience.
ISBN: 9783030036881$q(electronic bk.)
Standard No.: 10.1007/978-3-030-03688-1doiSubjects--Topical Terms:
190026
Cognitive science.
LC Class. No.: BF311 / .T876 2019
Dewey Class. No.: 153
Joint models of neural and behavioral data
LDR
:02604nmm a2200337 a 4500
001
555031
003
DE-He213
005
20190619153506.0
006
m d
007
cr nn 008maaau
008
191121s2019 gw s 0 eng d
020
$a
9783030036881$q(electronic bk.)
020
$a
9783030036874$q(paper)
024
7
$a
10.1007/978-3-030-03688-1
$2
doi
035
$a
978-3-030-03688-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
BF311
$b
.T876 2019
072
7
$a
JMR
$2
bicssc
072
7
$a
PSY008000
$2
bisacsh
072
7
$a
JMR
$2
thema
082
0 4
$a
153
$2
23
090
$a
BF311
$b
.T944 2019
100
1
$a
Turner, Brandon M.
$3
837018
245
1 0
$a
Joint models of neural and behavioral data
$h
[electronic resource] /
$c
by Brandon M. Turner, Birte U. Forstmann, Mark Steyvers.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xiii, 109 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Computational approaches to cognition and perception,
$x
2510-1889
505
0
$a
Chapter 1. Motivation -- Chapter 2. A Tutorial on Joint Modeling -- Chapter 3. Assessing Model Performance with Generalization Tests -- Chapter 4. Applications -- Chapter 5. Future Directions -- Chapter 6. Other Approaches.
520
$a
This book presents a flexible Bayesian framework for combining neural and cognitive models. Traditionally, studies in cognition and cognitive sciences have been done by either observing behavior (e.g., response times, percentage correct, etc.) or by observing neural activity (e.g., the BOLD response). These two types of observations have traditionally supported two separate lines of study, which are led by two different cognitive modelers. Joining neuroimaging and computational modeling in a single hierarchical framework allows the neural data to influence the parameters of the cognitive model and allows behavioral data to constrain the neural model. This Bayesian approach can be used to reveal interactions between behavioral and neural parameters, and ultimately, between neural activity and cognitive mechanisms. Chapters demonstrate the utility of this Bayesian model with a variety of applications, and feature a tutorial chapter where the methods can be applied to an example problem. The book also discusses other joint modeling approaches and future directions. Joint Models of Neural and Behavioral Data will be of interest to advanced graduate students and postdoctoral candidates in an academic setting as well as researchers in the fields of cognitive psychology and neuroscience.
650
0
$a
Cognitive science.
$3
190026
650
0
$a
Cognition.
$3
180665
650
1 4
$a
Cognitive Psychology.
$3
273717
650
2 4
$a
Neuropsychology.
$3
188060
650
2 4
$a
Psychological Methods/Evaluation.
$3
275095
650
2 4
$a
Experimental Psychology.
$3
739814
650
2 4
$a
Psychometrics.
$3
182715
700
1
$a
Forstmann, Birte U.
$3
719056
700
1
$a
Steyvers, Mark.
$3
837019
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Computational approaches to cognition and perception.
$3
806118
856
4 0
$u
https://doi.org/10.1007/978-3-030-03688-1
950
$a
Behavioral Science and Psychology (Springer-41168)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000167843
電子館藏
1圖書
電子書
EB BF311 T944 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-03688-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入