語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learning representation for multi-vi...
~
Ding, Zhengming.
Learning representation for multi-view data analysismodels and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learning representation for multi-view data analysisby Zhengming Ding, Handong Zhao, Yun Fu.
其他題名:
models and applications /
作者:
Ding, Zhengming.
其他作者:
Zhao, Handong.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
x, 268 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learning.
電子資源:
https://doi.org/10.1007/978-3-030-00734-8
ISBN:
9783030007348$q(electronic bk.)
Learning representation for multi-view data analysismodels and applications /
Ding, Zhengming.
Learning representation for multi-view data analysis
models and applications /[electronic resource] :by Zhengming Ding, Handong Zhao, Yun Fu. - Cham :Springer International Publishing :2019. - x, 268 p. :ill., digital ;24 cm. - Advanced information and knowledge processing,1610-3947. - Advanced information and knowledge processing..
Introduction -- Multi-view Clustering with Complete Information -- Multi-view Clustering with Partial Information -- Multi-view Outlier Detection -- Multi-view Transformation Learning -- Zero-Shot Learning -- Missing Modality Transfer Learning -- Deep Domain Adaptation -- Deep Domain Generalization.
This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers' understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal. A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
ISBN: 9783030007348$q(electronic bk.)
Standard No.: 10.1007/978-3-030-00734-8doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Learning representation for multi-view data analysismodels and applications /
LDR
:02386nmm a2200349 a 4500
001
555214
003
DE-He213
005
20181206131733.0
006
m d
007
cr nn 008maaau
008
191121s2019 gw s 0 eng d
020
$a
9783030007348$q(electronic bk.)
020
$a
9783030007331$q(paper)
024
7
$a
10.1007/978-3-030-00734-8
$2
doi
035
$a
978-3-030-00734-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UNF
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
072
7
$a
UNF
$2
thema
072
7
$a
UYQE
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.D584 2019
100
1
$a
Ding, Zhengming.
$3
837275
245
1 0
$a
Learning representation for multi-view data analysis
$h
[electronic resource] :
$b
models and applications /
$c
by Zhengming Ding, Handong Zhao, Yun Fu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
x, 268 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advanced information and knowledge processing,
$x
1610-3947
505
0
$a
Introduction -- Multi-view Clustering with Complete Information -- Multi-view Clustering with Partial Information -- Multi-view Outlier Detection -- Multi-view Transformation Learning -- Zero-Shot Learning -- Missing Modality Transfer Learning -- Deep Domain Adaptation -- Deep Domain Generalization.
520
$a
This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers' understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal. A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
650
0
$a
Machine learning.
$3
188639
650
0
$a
Learning models (Stochastic processes)
$3
240372
650
1 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Pattern Recognition.
$3
273706
700
1
$a
Zhao, Handong.
$3
837276
700
1
$a
Fu, Yun.
$3
679555
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Advanced information and knowledge processing.
$3
560385
856
4 0
$u
https://doi.org/10.1007/978-3-030-00734-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000168026
電子館藏
1圖書
電子書
EB Q325.5 D584 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-00734-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入