語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Large scale data analytics
~
Cho, Chung Yik.
Large scale data analytics
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Large scale data analyticsby Chung Yik Cho ... [et al.].
其他作者:
Cho, Chung Yik.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
ix, 89 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Big data.
電子資源:
https://doi.org/10.1007/978-3-030-03892-2
ISBN:
9783030038922$q(electronic bk.)
Large scale data analytics
Large scale data analytics
[electronic resource] /by Chung Yik Cho ... [et al.]. - Cham :Springer International Publishing :2019. - ix, 89 p. :ill., digital ;24 cm. - Data, semantics and cloud computing,v.8062524-6593 ;. - Data, semantics and cloud computing ;v.832..
Introduction -- Background -- Large Scale Data Analytics -- Query Framework -- Results and Discussion -- Conclusion and Future Works.
This book presents a language integrated query framework for big data. The continuous, rapid growth of data information to volumes of up to terabytes (1,024 gigabytes) or petabytes (1,048,576 gigabytes) means that the need for a system to manage and query information from large scale data sources is becoming more urgent. Currently available frameworks and methodologies are limited in terms of efficiency and querying compatibility between data sources due to the differences in information storage structures. For this research, the authors designed and programmed a framework based on the fundamentals of language integrated query to query existing data sources without the process of data restructuring. A web portal for the framework was also built to enable users to query protein data from the Protein Data Bank (PDB) and implement it on Microsoft Azure, a cloud computing environment known for its reliability, vast computing resources and cost-effectiveness.
ISBN: 9783030038922$q(electronic bk.)
Standard No.: 10.1007/978-3-030-03892-2doiSubjects--Topical Terms:
609582
Big data.
LC Class. No.: QA76.9.B45
Dewey Class. No.: 005.7
Large scale data analytics
LDR
:02105nmm a2200337 a 4500
001
555507
003
DE-He213
005
20190703140605.0
006
m d
007
cr nn 008maaau
008
191121s2019 gw s 0 eng d
020
$a
9783030038922$q(electronic bk.)
020
$a
9783030038915$q(paper)
024
7
$a
10.1007/978-3-030-03892-2
$2
doi
035
$a
978-3-030-03892-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.B45
072
7
$a
TBJ
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
TBJ
$2
thema
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.B45
$b
L322 2019
245
0 0
$a
Large scale data analytics
$h
[electronic resource] /
$c
by Chung Yik Cho ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
ix, 89 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Data, semantics and cloud computing,
$x
2524-6593 ;
$v
v.806
505
0
$a
Introduction -- Background -- Large Scale Data Analytics -- Query Framework -- Results and Discussion -- Conclusion and Future Works.
520
$a
This book presents a language integrated query framework for big data. The continuous, rapid growth of data information to volumes of up to terabytes (1,024 gigabytes) or petabytes (1,048,576 gigabytes) means that the need for a system to manage and query information from large scale data sources is becoming more urgent. Currently available frameworks and methodologies are limited in terms of efficiency and querying compatibility between data sources due to the differences in information storage structures. For this research, the authors designed and programmed a framework based on the fundamentals of language integrated query to query existing data sources without the process of data restructuring. A web portal for the framework was also built to enable users to query protein data from the Protein Data Bank (PDB) and implement it on Microsoft Azure, a cloud computing environment known for its reliability, vast computing resources and cost-effectiveness.
650
0
$a
Big data.
$3
609582
650
1 4
$a
Mathematical and Computational Engineering.
$3
775095
700
1
$a
Cho, Chung Yik.
$3
837666
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Data, semantics and cloud computing ;
$v
v.832.
$3
836451
856
4 0
$u
https://doi.org/10.1007/978-3-030-03892-2
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000168319
電子館藏
1圖書
電子書
EB QA76.9.B45 L322 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-03892-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入