語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Representations of the infinite symm...
~
Borodin, Alexei.
Representations of the infinite symmetric group
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Representations of the infinite symmetric groupAlexei Borodin, Grigori Olshanski.
作者:
Borodin, Alexei.
其他作者:
Olshanskii, Grigori
出版者:
Cambridge :Cambridge University Press,2017.
面頁冊數:
vii, 160 p. :ill., digital ;24 cm.
標題:
Hopf algebras.
電子資源:
https://doi.org/10.1017/CBO9781316798577
ISBN:
9781316798577$q(electronic bk.)
Representations of the infinite symmetric group
Borodin, Alexei.
Representations of the infinite symmetric group
[electronic resource] /Alexei Borodin, Grigori Olshanski. - Cambridge :Cambridge University Press,2017. - vii, 160 p. :ill., digital ;24 cm. - Cambridge studies in advanced mathematics ;160. - Cambridge studies in advanced mathematics ;105..
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
ISBN: 9781316798577$q(electronic bk.)Subjects--Topical Terms:
190853
Hopf algebras.
LC Class. No.: QA613.8 / .B67 2017
Dewey Class. No.: 515.22
Representations of the infinite symmetric group
LDR
:01800nmm a2200253 a 4500
001
557838
003
UkCbUP
005
20191005153602.0
006
m d
007
cr nn 008maaau
008
191205s2017 enk o 1 0 eng d
020
$a
9781316798577$q(electronic bk.)
020
$a
9781107175556$q(paper)
035
$a
CR9781316798577
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA613.8
$b
.B67 2017
082
0 4
$a
515.22
$2
23
090
$a
QA613.8
$b
.B736 2017
100
1
$a
Borodin, Alexei.
$3
840454
245
1 0
$a
Representations of the infinite symmetric group
$h
[electronic resource] /
$c
Alexei Borodin, Grigori Olshanski.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
2017.
300
$a
vii, 160 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge studies in advanced mathematics ;
$v
160
520
$a
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
650
0
$a
Hopf algebras.
$3
190853
650
0
$a
Algebraic topology.
$3
189702
650
0
$a
Representations of groups.
$3
191076
650
0
$a
Symmetry groups.
$3
185805
700
1
$a
Olshanskii, Grigori
$q
(Grigori I.)
$3
840455
830
0
$a
Cambridge studies in advanced mathematics ;
$v
105.
$3
541725
856
4 0
$u
https://doi.org/10.1017/CBO9781316798577
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000170284
電子館藏
1圖書
電子書
EB QA613.8 .B736 2017 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1017/CBO9781316798577
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入