語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Backward fuzzy rule interpolation
~
Jin, Shangzhu.
Backward fuzzy rule interpolation
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Backward fuzzy rule interpolationby Shangzhu Jin, Qiang Shen, Jun Peng.
作者:
Jin, Shangzhu.
其他作者:
Shen, Qiang.
出版者:
Singapore :Springer Singapore :2019.
面頁冊數:
xvii, 159 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Fuzzy sets.
電子資源:
https://doi.org/10.1007/978-981-13-1654-8
ISBN:
9789811316548$q(electronic bk.)
Backward fuzzy rule interpolation
Jin, Shangzhu.
Backward fuzzy rule interpolation
[electronic resource] /by Shangzhu Jin, Qiang Shen, Jun Peng. - Singapore :Springer Singapore :2019. - xvii, 159 p. :ill., digital ;24 cm.
Introduction -- Background: Fuzzy Rule Interpolation (FRI) -- BFRI with a Single Missing Antecedent Value (S-BFRI) -- BFRI with Multiple Missing Antecedent Values (M-BFRI) -- An Alternative BFRI Method -- Backward rough-fuzzy rule interpolation -- Application: Terrorism Risk Assessment using BFRI -- Conclusion -- Appendix A Publications Arising from the Thesis -- Appendix B List of Acronyms -- Appendix C Glossary of terms -- Bibliography.
This book chiefly presents a novel approach referred to as backward fuzzy rule interpolation and extrapolation (BFRI) BFRI allows observations that directly relate to the conclusion to be inferred or interpolated from other antecedents and conclusions. Based on the scale and move transformation interpolation, this approach supports both interpolation and extrapolation, which involve multiple hierarchical intertwined fuzzy rules, each with multiple antecedents. As such, it offers a means of broadening the applications of fuzzy rule interpolation and fuzzy inference. The book deals with the general situation, in which there may be more than one antecedent value missing for a given problem. Two techniques, termed the parametric approach and feedback approach, are proposed in an attempt to perform backward interpolation with multiple missing antecedent values. In addition, to further enhance the versatility and potential of BFRI, the backward fuzzy interpolation method is extended to support α-cut based interpolation by employing a fuzzy interpolation mechanism for multi-dimensional input spaces (IMUL) Finally, from an integrated application analysis perspective, experimental studies based upon a real-world scenario of terrorism risk assessment are provided in order to demonstrate the potential and efficacy of the hierarchical fuzzy rule interpolation methodology.
ISBN: 9789811316548$q(electronic bk.)
Standard No.: 10.1007/978-981-13-1654-8doiSubjects--Topical Terms:
182529
Fuzzy sets.
LC Class. No.: QA248.5 / .J55 2019
Dewey Class. No.: 511.3223
Backward fuzzy rule interpolation
LDR
:02813nmm a2200325 a 4500
001
562923
003
DE-He213
005
20191023141706.0
006
m d
007
cr nn 008maaau
008
200227s2019 si s 0 eng d
020
$a
9789811316548$q(electronic bk.)
020
$a
9789811316531$q(paper)
024
7
$a
10.1007/978-981-13-1654-8
$2
doi
035
$a
978-981-13-1654-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA248.5
$b
.J55 2019
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
511.3223
$2
23
090
$a
QA248.5
$b
.J61 2019
100
1
$a
Jin, Shangzhu.
$3
848252
245
1 0
$a
Backward fuzzy rule interpolation
$h
[electronic resource] /
$c
by Shangzhu Jin, Qiang Shen, Jun Peng.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2019.
300
$a
xvii, 159 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Background: Fuzzy Rule Interpolation (FRI) -- BFRI with a Single Missing Antecedent Value (S-BFRI) -- BFRI with Multiple Missing Antecedent Values (M-BFRI) -- An Alternative BFRI Method -- Backward rough-fuzzy rule interpolation -- Application: Terrorism Risk Assessment using BFRI -- Conclusion -- Appendix A Publications Arising from the Thesis -- Appendix B List of Acronyms -- Appendix C Glossary of terms -- Bibliography.
520
$a
This book chiefly presents a novel approach referred to as backward fuzzy rule interpolation and extrapolation (BFRI) BFRI allows observations that directly relate to the conclusion to be inferred or interpolated from other antecedents and conclusions. Based on the scale and move transformation interpolation, this approach supports both interpolation and extrapolation, which involve multiple hierarchical intertwined fuzzy rules, each with multiple antecedents. As such, it offers a means of broadening the applications of fuzzy rule interpolation and fuzzy inference. The book deals with the general situation, in which there may be more than one antecedent value missing for a given problem. Two techniques, termed the parametric approach and feedback approach, are proposed in an attempt to perform backward interpolation with multiple missing antecedent values. In addition, to further enhance the versatility and potential of BFRI, the backward fuzzy interpolation method is extended to support α-cut based interpolation by employing a fuzzy interpolation mechanism for multi-dimensional input spaces (IMUL) Finally, from an integrated application analysis perspective, experimental studies based upon a real-world scenario of terrorism risk assessment are provided in order to demonstrate the potential and efficacy of the hierarchical fuzzy rule interpolation methodology.
650
0
$a
Fuzzy sets.
$3
182529
650
0
$a
Fuzzy mathematics.
$3
243725
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Simulation and Modeling.
$3
273719
650
2 4
$a
Computer-Aided Engineering (CAD, CAE) and Design.
$3
274500
700
1
$a
Shen, Qiang.
$3
378510
700
1
$a
Peng, Jun.
$3
848253
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-13-1654-8
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000174492
電子館藏
1圖書
電子書
EB QA248.5 .J61 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-1654-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入