語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Targeting upliftan introduction to n...
~
Michel, Rene.
Targeting upliftan introduction to net scores /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Targeting upliftby Rene Michel, Igor Schnakenburg, Tobias von Martens.
其他題名:
an introduction to net scores /
作者:
Michel, Rene.
其他作者:
Schnakenburg, Igor.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xxxii, 352 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Data mining.
電子資源:
https://doi.org/10.1007/978-3-030-22625-1
ISBN:
9783030226251$q(electronic bk.)
Targeting upliftan introduction to net scores /
Michel, Rene.
Targeting uplift
an introduction to net scores /[electronic resource] :by Rene Michel, Igor Schnakenburg, Tobias von Martens. - Cham :Springer International Publishing :2019. - xxxii, 352 p. :ill., digital ;24 cm.
List of Symbols -- List of Figures -- List of Tables -- Introduction -- The Traditional Approach: Gross Scoring -- Basic Net Scoring Methods: The Uplift Approach -- Validation of Net Models: Measuring Stability and Discriminatory Power -- Supplementary Methods for Variable Transformation and Selection -- A Simulation Framework for the Validation of Research Hypotheses on Net Scoring -- Software Implementations -- Data Prerequisites -- Practical Issues and Business Cases -- Summary and Outlook -- Appendix -- Other Literature on Net Scoring -- Index.
This book explores all relevant aspects of net scoring, also known as uplift modeling: a data mining approach used to analyze and predict the effects of a given treatment on a desired target variable for an individual observation. After discussing modern net score modeling methods, data preparation, and the assessment of uplift models, the book investigates software implementations and real-world scenarios. Focusing on the application of theoretical results and on practical issues of uplift modeling, it also includes a dedicated chapter on software solutions in SAS, R, Spectrum Miner, and KNIME, which compares the respective tools. This book also presents the applications of net scoring in various contexts, e.g. medical treatment, with a special emphasis on direct marketing and corresponding business cases. The target audience primarily includes data scientists, especially researchers and practitioners in predictive modeling and scoring, mainly, but not exclusively, in the marketing context.
ISBN: 9783030226251$q(electronic bk.)
Standard No.: 10.1007/978-3-030-22625-1doiSubjects--Topical Terms:
184440
Data mining.
LC Class. No.: QA76.9.D343 / M534 2019
Dewey Class. No.: 006.312
Targeting upliftan introduction to net scores /
LDR
:02597nmm a2200337 a 4500
001
566461
003
DE-He213
005
20191223142433.0
006
m d
007
cr nn 008maaau
008
200429s2019 gw s 0 eng d
020
$a
9783030226251$q(electronic bk.)
020
$a
9783030226244$q(paper)
024
7
$a
10.1007/978-3-030-22625-1
$2
doi
035
$a
978-3-030-22625-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
M534 2019
072
7
$a
PBT
$2
bicssc
072
7
$a
BUS061000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
K
$2
thema
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
M623 2019
100
1
$a
Michel, Rene.
$3
852168
245
1 0
$a
Targeting uplift
$h
[electronic resource] :
$b
an introduction to net scores /
$c
by Rene Michel, Igor Schnakenburg, Tobias von Martens.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xxxii, 352 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
List of Symbols -- List of Figures -- List of Tables -- Introduction -- The Traditional Approach: Gross Scoring -- Basic Net Scoring Methods: The Uplift Approach -- Validation of Net Models: Measuring Stability and Discriminatory Power -- Supplementary Methods for Variable Transformation and Selection -- A Simulation Framework for the Validation of Research Hypotheses on Net Scoring -- Software Implementations -- Data Prerequisites -- Practical Issues and Business Cases -- Summary and Outlook -- Appendix -- Other Literature on Net Scoring -- Index.
520
$a
This book explores all relevant aspects of net scoring, also known as uplift modeling: a data mining approach used to analyze and predict the effects of a given treatment on a desired target variable for an individual observation. After discussing modern net score modeling methods, data preparation, and the assessment of uplift models, the book investigates software implementations and real-world scenarios. Focusing on the application of theoretical results and on practical issues of uplift modeling, it also includes a dedicated chapter on software solutions in SAS, R, Spectrum Miner, and KNIME, which compares the respective tools. This book also presents the applications of net scoring in various contexts, e.g. medical treatment, with a special emphasis on direct marketing and corresponding business cases. The target audience primarily includes data scientists, especially researchers and practitioners in predictive modeling and scoring, mainly, but not exclusively, in the marketing context.
650
0
$a
Data mining.
$3
184440
650
1 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
825914
650
2 4
$a
Business Information Systems.
$3
274346
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Marketing.
$3
182957
650
2 4
$a
Statistical Theory and Methods.
$3
274054
700
1
$a
Schnakenburg, Igor.
$3
852169
700
1
$a
von Martens, Tobias.
$3
852170
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-22625-1
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000176259
電子館藏
1圖書
電子書
EB QA76.9.D343 M623 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-22625-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入