語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Classical Newtonian gravitya compreh...
~
Capuzzo Dolcetta, Roberto A.
Classical Newtonian gravitya comprehensive introduction, with examples and exercises /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Classical Newtonian gravityby Roberto A. Capuzzo Dolcetta.
其他題名:
a comprehensive introduction, with examples and exercises /
作者:
Capuzzo Dolcetta, Roberto A.
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xvi, 176 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Gravity.
電子資源:
https://doi.org/10.1007/978-3-030-25846-7
ISBN:
9783030258467$q(electronic bk.)
Classical Newtonian gravitya comprehensive introduction, with examples and exercises /
Capuzzo Dolcetta, Roberto A.
Classical Newtonian gravity
a comprehensive introduction, with examples and exercises /[electronic resource] :by Roberto A. Capuzzo Dolcetta. - Cham :Springer International Publishing :2019. - xvi, 176 p. :ill., digital ;24 cm. - UNITEXT for physics,2198-7882. - UNITEXT for physics..
Chapter 1 -- Elements of Vector Calculus -- 1.1 Vector Functions of Real Variables -- 1.2 Limits of vector Functions -- 1.3 Derivatives of Vector Functions -- 1.3.1 Geometrie Interpretation -- 1.4 Integrals of Vector Functions -- 1.5 The Formal Operator Nabla, ∇ -- 1.5.1 ∇ in Polar Coordinates -- 1.5.2 ∇ in Cylindrical Coordinates -- 1.6 The Divergence Operator -- 1.7 The Curl Operator -- 1.8 Divergence and Curl by Means of ∇ -- 1.8.1 Spherical Polar Coordinates -- 1.8.2 Cylindrieal Coordinates -- 1.9 Vector Fields -- 1.9.1 Field Lines -- 1.10 Divergence Theorem -- 1.10.1 Velocity Fields -- 1.10.2 Continuity Equation -- 1.10.3 Field Lines of Solenoidal Fields -- Chapter 2 Potential Theory -- Discrete mass distributions -- 2.1 Single particle gravitational potential -- 2.2 The gravitating N body case -- 2.3 Mechanical Energy of the N bodies -- 2.4 The Scalar Virial Theorem -- 2.4.1 Consequenees of the Virial Theorem -- 2.5 Newtonian Gravitational Force and Potential -- 2.6 Gauss Theorem -- 2.7 Gravitational Potential Energy -- 2.8 Newton's Theorems -- Chapter 3 -- Central Force Fields -- 3.1 Force and Potential of a Spherical Mass Distribution -- 3.2 Circular orbits -- 3.2 Potential of a Homogeneous Sphere -- 3.3.1 Quality of Motion -- 3.3.2 Particle Trajectories -- 3.4 Periods of Oscillations -- 3.4.1 Radial and Azimuthal Oscillations -- 3.4.2 Radial Oscillations in a Homogeneous Sphere -- 3.4.3 Radial Oscillations in a Point Mass Potential -- 3.5 The Isochrone Potential -- 3.6 The Inverse Problem in Spherical Distributions -- Chapter 4 -- Potential Series Developments -- 4.1 Fundamental Solution of Laplace'sChapter 1 -- Elements of Vector Calculus -- 1.1 Vector Functions of Real Variables -- 1.2 Limits of vector Functions -- 1.3 Derivatives of Vector Functions -- 1.3.1 Geometrie Interpretation -- 1.4 Integrals of Vector Functions -- 1.5 The Formal Operator Nabla, ∇ -- 1.5.1 ∇ in Polar Coordinates -- 1.5.2 ∇ in Cylindrical Coordinates -- 1.6 The Divergence Operator -- 1.7 The Curl Operator -- 1.8 Divergence and Curl by Means of ∇ -- 1.8.1 Spherical Polar Coordinates -- 1.8.2 Cylindrieal Coordinates -- 1.9 Vector Fields -- 1.9.1 Field Lines -- 1.10 Divergence Theorem -- 1.10.1 Velocity Fields -- 1.10.2 Continuity Equation -- 1.10.3 Field Lines of Solenoidal Fields -- Chapter 2 Potential Theory -- Discrete mass distributions -- 2.1 Single particle gravitational potential -- 2.2 The gravitating N body case -- 2.3 Mechanical Energy of the N bodies -- 2.4 The Scalar Virial Theorem -- 2.4.1 Consequenees of the Virial Theorem -- 2.5 Newtonian Gravitational Force and Potential -- 2.6 Gauss Theorem -- 2.7 Gravitational Potential Energy -- 2.8 Newton's Theorems -- Chapter 3 -- Central Force Fields -- 3.1 Force and Potential of a Spherical Mass Distribution -- 3.2 Circular orbits -- 3.2 Potential of a Homogeneous Sphere -- 3.3.1 Quality of Motion -- 3.3.2 Particle Trajectories -- 3.4 Periods of Oscillations -- 3.4.1 Radial and Azimuthal Oscillations -- 3.4.2 Radial Oscillations in a Homogeneous Sphere -- 3.4.3 Radial Oscillations in a Point Mass Potential -- 3.5 The Isochrone Potential -- 3.6 The Inverse Problem in Spherical Distributions -- Chapter 4 -- Potential Series Developments -- 4.1 Fundamental Solution of Laplace's Equation -- 4.2 Harmonic Functions -- 4.3 Legendre's Polynomials -- 4.4 Recursive Relations -- 4.4.1 First Recursive Relation -- 4.4.2 Second Recursive Relation -- 4.5 Legendre Differential Equation -- 4.6 Orthogonality of Legendre's Polynomials -- 4.7 Development in Series of Legendre's Polynomials -- 4.8 Rodrigues Formula Chapter 5 -- Harmonic and Homogeneous Polynomials -- 5.1 Spherical Harmonics -- 5.2 Solution of the Differential equations for Sm(θ, ϕ) -- 5.3 The Solution in ϕ -- 5.4 A note on the Associated Legendre Differential Equation -- 5.5 Zonal, Sectorial and Tesseral Spherical Harmonics -- 5.5.1Orthogonality Properties -- Chapter 6 -- Series of Spherical Harmonics -- 6.1 Potential Developments Out of a Mass Distribution -- 6.2 The External Earth Potential -- 6.3 Exercises.
This textbook offers a readily comprehensible introduction to classical Newtonian gravitation, which is fundamental for an understanding of classical mechanics and is particularly relevant to Astrophysics. The opening chapter recalls essential elements of vectorial calculus, especially to provide the formalism used in subsequent chapters. In chapter two Classical Newtonian gravity theory for one point mass and for a generic number N of point masses is then presented and discussed. The theory for point masses is naturally extended to the continuous case. The third chapter addresses the paradigmatic case of spherical symmetry in the mass density distribution (central force), with introduction of the useful tool of qualitative treatment of motion. Subsequent chapters discuss the general case of non-symmetric mass density distribution and develop classical potential theory, with elements of harmonic theory, which is essential to understand the potential development in series of the gravitational potential, the subject of the fourth chapter. Finally, in the last chapter the specific case of motion of a satellite around the earth is considered. Examples and exercises are presented throughout the book to clarify aspects of the theory. The book is aimed at those who wish to progress further beyond an initial bachelor degree, onward to a master degree, and a PhD. It is also a valuable resource for postgraduates and active researchers in the field.
ISBN: 9783030258467$q(electronic bk.)
Standard No.: 10.1007/978-3-030-25846-7doiSubjects--Topical Terms:
320455
Gravity.
LC Class. No.: QB335 / .C378 2019
Dewey Class. No.: 526.7
Classical Newtonian gravitya comprehensive introduction, with examples and exercises /
LDR
:06607nmm a2200337 a 4500
001
566527
003
DE-He213
005
20191224114644.0
006
m d
007
cr nn 008maaau
008
200429s2019 gw s 0 eng d
020
$a
9783030258467$q(electronic bk.)
020
$a
9783030258450$q(paper)
024
7
$a
10.1007/978-3-030-25846-7
$2
doi
035
$a
978-3-030-25846-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QB335
$b
.C378 2019
072
7
$a
PHD
$2
bicssc
072
7
$a
SCI041000
$2
bisacsh
072
7
$a
PHD
$2
thema
082
0 4
$a
526.7
$2
23
090
$a
QB335
$b
.C255 2019
100
1
$a
Capuzzo Dolcetta, Roberto A.
$3
852253
245
1 0
$a
Classical Newtonian gravity
$h
[electronic resource] :
$b
a comprehensive introduction, with examples and exercises /
$c
by Roberto A. Capuzzo Dolcetta.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xvi, 176 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
UNITEXT for physics,
$x
2198-7882
505
0
$a
Chapter 1 -- Elements of Vector Calculus -- 1.1 Vector Functions of Real Variables -- 1.2 Limits of vector Functions -- 1.3 Derivatives of Vector Functions -- 1.3.1 Geometrie Interpretation -- 1.4 Integrals of Vector Functions -- 1.5 The Formal Operator Nabla, ∇ -- 1.5.1 ∇ in Polar Coordinates -- 1.5.2 ∇ in Cylindrical Coordinates -- 1.6 The Divergence Operator -- 1.7 The Curl Operator -- 1.8 Divergence and Curl by Means of ∇ -- 1.8.1 Spherical Polar Coordinates -- 1.8.2 Cylindrieal Coordinates -- 1.9 Vector Fields -- 1.9.1 Field Lines -- 1.10 Divergence Theorem -- 1.10.1 Velocity Fields -- 1.10.2 Continuity Equation -- 1.10.3 Field Lines of Solenoidal Fields -- Chapter 2 Potential Theory -- Discrete mass distributions -- 2.1 Single particle gravitational potential -- 2.2 The gravitating N body case -- 2.3 Mechanical Energy of the N bodies -- 2.4 The Scalar Virial Theorem -- 2.4.1 Consequenees of the Virial Theorem -- 2.5 Newtonian Gravitational Force and Potential -- 2.6 Gauss Theorem -- 2.7 Gravitational Potential Energy -- 2.8 Newton's Theorems -- Chapter 3 -- Central Force Fields -- 3.1 Force and Potential of a Spherical Mass Distribution -- 3.2 Circular orbits -- 3.2 Potential of a Homogeneous Sphere -- 3.3.1 Quality of Motion -- 3.3.2 Particle Trajectories -- 3.4 Periods of Oscillations -- 3.4.1 Radial and Azimuthal Oscillations -- 3.4.2 Radial Oscillations in a Homogeneous Sphere -- 3.4.3 Radial Oscillations in a Point Mass Potential -- 3.5 The Isochrone Potential -- 3.6 The Inverse Problem in Spherical Distributions -- Chapter 4 -- Potential Series Developments -- 4.1 Fundamental Solution of Laplace'sChapter 1 -- Elements of Vector Calculus -- 1.1 Vector Functions of Real Variables -- 1.2 Limits of vector Functions -- 1.3 Derivatives of Vector Functions -- 1.3.1 Geometrie Interpretation -- 1.4 Integrals of Vector Functions -- 1.5 The Formal Operator Nabla, ∇ -- 1.5.1 ∇ in Polar Coordinates -- 1.5.2 ∇ in Cylindrical Coordinates -- 1.6 The Divergence Operator -- 1.7 The Curl Operator -- 1.8 Divergence and Curl by Means of ∇ -- 1.8.1 Spherical Polar Coordinates -- 1.8.2 Cylindrieal Coordinates -- 1.9 Vector Fields -- 1.9.1 Field Lines -- 1.10 Divergence Theorem -- 1.10.1 Velocity Fields -- 1.10.2 Continuity Equation -- 1.10.3 Field Lines of Solenoidal Fields -- Chapter 2 Potential Theory -- Discrete mass distributions -- 2.1 Single particle gravitational potential -- 2.2 The gravitating N body case -- 2.3 Mechanical Energy of the N bodies -- 2.4 The Scalar Virial Theorem -- 2.4.1 Consequenees of the Virial Theorem -- 2.5 Newtonian Gravitational Force and Potential -- 2.6 Gauss Theorem -- 2.7 Gravitational Potential Energy -- 2.8 Newton's Theorems -- Chapter 3 -- Central Force Fields -- 3.1 Force and Potential of a Spherical Mass Distribution -- 3.2 Circular orbits -- 3.2 Potential of a Homogeneous Sphere -- 3.3.1 Quality of Motion -- 3.3.2 Particle Trajectories -- 3.4 Periods of Oscillations -- 3.4.1 Radial and Azimuthal Oscillations -- 3.4.2 Radial Oscillations in a Homogeneous Sphere -- 3.4.3 Radial Oscillations in a Point Mass Potential -- 3.5 The Isochrone Potential -- 3.6 The Inverse Problem in Spherical Distributions -- Chapter 4 -- Potential Series Developments -- 4.1 Fundamental Solution of Laplace's Equation -- 4.2 Harmonic Functions -- 4.3 Legendre's Polynomials -- 4.4 Recursive Relations -- 4.4.1 First Recursive Relation -- 4.4.2 Second Recursive Relation -- 4.5 Legendre Differential Equation -- 4.6 Orthogonality of Legendre's Polynomials -- 4.7 Development in Series of Legendre's Polynomials -- 4.8 Rodrigues Formula Chapter 5 -- Harmonic and Homogeneous Polynomials -- 5.1 Spherical Harmonics -- 5.2 Solution of the Differential equations for Sm(θ, ϕ) -- 5.3 The Solution in ϕ -- 5.4 A note on the Associated Legendre Differential Equation -- 5.5 Zonal, Sectorial and Tesseral Spherical Harmonics -- 5.5.1Orthogonality Properties -- Chapter 6 -- Series of Spherical Harmonics -- 6.1 Potential Developments Out of a Mass Distribution -- 6.2 The External Earth Potential -- 6.3 Exercises.
520
$a
This textbook offers a readily comprehensible introduction to classical Newtonian gravitation, which is fundamental for an understanding of classical mechanics and is particularly relevant to Astrophysics. The opening chapter recalls essential elements of vectorial calculus, especially to provide the formalism used in subsequent chapters. In chapter two Classical Newtonian gravity theory for one point mass and for a generic number N of point masses is then presented and discussed. The theory for point masses is naturally extended to the continuous case. The third chapter addresses the paradigmatic case of spherical symmetry in the mass density distribution (central force), with introduction of the useful tool of qualitative treatment of motion. Subsequent chapters discuss the general case of non-symmetric mass density distribution and develop classical potential theory, with elements of harmonic theory, which is essential to understand the potential development in series of the gravitational potential, the subject of the fourth chapter. Finally, in the last chapter the specific case of motion of a satellite around the earth is considered. Examples and exercises are presented throughout the book to clarify aspects of the theory. The book is aimed at those who wish to progress further beyond an initial bachelor degree, onward to a master degree, and a PhD. It is also a valuable resource for postgraduates and active researchers in the field.
650
0
$a
Gravity.
$3
320455
650
1 4
$a
Classical Mechanics.
$3
769955
650
2 4
$a
Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)
$3
770123
650
2 4
$a
Potential Theory.
$3
274599
650
2 4
$a
Classical and Quantum Gravitation, Relativity Theory.
$3
376367
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
UNITEXT for physics.
$3
681848
856
4 0
$u
https://doi.org/10.1007/978-3-030-25846-7
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000176325
電子館藏
1圖書
電子書
EB QB335 .C255 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-25846-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入