語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bayesian statistics and new generati...
~
(1998 :)
Bayesian statistics and new generationsBAYSM 2018, Warwick, UK, July 2-3 : selected contributions /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Bayesian statistics and new generationsedited by Raffaele Argiento, Daniele Durante, Sara Wade.
其他題名:
BAYSM 2018, Warwick, UK, July 2-3 : selected contributions /
其他題名:
BAYSM 2018
其他作者:
Argiento, Raffaele.
團體作者:
出版者:
Cham :Springer International Publishing :2019.
面頁冊數:
xi, 184 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Bayesian statistical decision theoryTextbooks.
電子資源:
https://doi.org/10.1007/978-3-030-30611-3
ISBN:
9783030306113$q(electronic bk.)
Bayesian statistics and new generationsBAYSM 2018, Warwick, UK, July 2-3 : selected contributions /
Bayesian statistics and new generations
BAYSM 2018, Warwick, UK, July 2-3 : selected contributions /[electronic resource] :BAYSM 2018edited by Raffaele Argiento, Daniele Durante, Sara Wade. - Cham :Springer International Publishing :2019. - xi, 184 p. :ill., digital ;24 cm. - Springer proceedings in mathematics & statistics,v.2962194-1009 ;. - Springer proceedings in mathematics & statistics ;v.19..
Part I - Theory and Methods: A. Diana, J. Griffin, and E. Matechou, A Polya Tree Based Model for Unmarked Individuals in an Open Wildlife Population -- S. Haque and K. Mengersen, Bias Estimation and Correction Using Bootstrap Simulation of the Linking Process -- N. Laitonjam and N. Hurley, Non-parametric Overlapping Community Detection -- L. Fee Schneider, T. Staudt, and A. Munk, Posterior Consistency in the Binomial Model with Unknown Parameters: A Numerical Study -- C. Spire and D. Chakrabarty, Learning in the Absence of Training Data - a Galactic Application -- D. Tait and B. Worton, Multiplicative Latent Force Models -- PART II - Computational Statistics: N. Cunningham, J. E. Griffin, D. L. Wild, and A. Lee, particleMDI: A Julia Package for the Integrative Cluster Analysis of Multiple Datasets -- D. Hosszejni and G. Kastner, Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage -- B. Karimi and M. Lavielle, Efficient Metropolis-Hastings Sampling for Nonlinear Mixed Effects Models -- G. Kratzer, Reinhard Furrer, and Pittavino Marta. Comparison Between Suitable Priors for Additive Bayesian Networks -- I. Peneva and R. Savage, A Bayesian Nonparametric Model for Integrative Clustering of Omics Data -- I. Schwabe, Bayesian Inference of Interaction Effects in Item-Level Hierarchical Twin Data -- PART III - Applied Statistics: K. Brock, L. Billingham, C. Yap, and G. Middleton, A Phase II Clinical Trial Design for Associated Co-Primary Efficacy and Toxicity Outcomes with Baseline Covariates -- E. Lanzarone, E. Scalco, A. Mastropietro, S. Marzi, and G. Rizzo, A Conditional Autoregressive Model for estimating Slow and Fast Diffusion from Magnetic Resonance Images -- D. Rocha, M. Scotto, C. Pinto, J. Nuno Tavares, and S. Gouveia, Simulation Study of HIV Temporal Patterns Using Bayesian Methodology -- A. Shenvi, J. Smith, R. Walton, and S. Eldridge, Modelling with Non-Stratified Chain Event Graphs -- O. Stevenson and B. Brewer, Modelling Career Trajectories of Cricket Players Using Gaussian Processes -- F. Turner, R. Wilkinson, C. Buck, J. Jones, and L. Sime, Ice Cores and Emulation: Learning More About Past Ice Sheet Shapes.
This book presents a selection of peer-reviewed contributions to the fourth Bayesian Young Statisticians Meeting, BAYSM 2018, held at the University of Warwick on 2-3 July 2018. The meeting provided a valuable opportunity for young researchers, MSc students, PhD students, and postdocs interested in Bayesian statistics to connect with the broader Bayesian community. The proceedings offer cutting-edge papers on a wide range of topics in Bayesian statistics, identify important challenges and investigate promising methodological approaches, while also assessing current methods and stimulating applications. The book is intended for a broad audience of statisticians, and demonstrates how theoretical, methodological, and computational aspects are often combined in the Bayesian framework to successfully tackle complex problems.
ISBN: 9783030306113$q(electronic bk.)
Standard No.: 10.1007/978-3-030-30611-3doiSubjects--Topical Terms:
443102
Bayesian statistical decision theory
--Textbooks.
LC Class. No.: QA279.5 / .B39 2018
Dewey Class. No.: 519.542
Bayesian statistics and new generationsBAYSM 2018, Warwick, UK, July 2-3 : selected contributions /
LDR
:04192nmm a2200349 a 4500
001
569645
003
DE-He213
005
20191121152402.0
006
m d
007
cr nn 008maaau
008
200723s2019 gw s 0 eng d
020
$a
9783030306113$q(electronic bk.)
020
$a
9783030306106$q(paper)
024
7
$a
10.1007/978-3-030-30611-3
$2
doi
035
$a
978-3-030-30611-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA279.5
$b
.B39 2018
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.542
$2
23
090
$a
QA279.5
$b
.B357 2018
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Bayesian statistics and new generations
$h
[electronic resource] :
$b
BAYSM 2018, Warwick, UK, July 2-3 : selected contributions /
$c
edited by Raffaele Argiento, Daniele Durante, Sara Wade.
246
3
$a
BAYSM 2018
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2019.
300
$a
xi, 184 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer proceedings in mathematics & statistics,
$x
2194-1009 ;
$v
v.296
505
0
$a
Part I - Theory and Methods: A. Diana, J. Griffin, and E. Matechou, A Polya Tree Based Model for Unmarked Individuals in an Open Wildlife Population -- S. Haque and K. Mengersen, Bias Estimation and Correction Using Bootstrap Simulation of the Linking Process -- N. Laitonjam and N. Hurley, Non-parametric Overlapping Community Detection -- L. Fee Schneider, T. Staudt, and A. Munk, Posterior Consistency in the Binomial Model with Unknown Parameters: A Numerical Study -- C. Spire and D. Chakrabarty, Learning in the Absence of Training Data - a Galactic Application -- D. Tait and B. Worton, Multiplicative Latent Force Models -- PART II - Computational Statistics: N. Cunningham, J. E. Griffin, D. L. Wild, and A. Lee, particleMDI: A Julia Package for the Integrative Cluster Analysis of Multiple Datasets -- D. Hosszejni and G. Kastner, Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage -- B. Karimi and M. Lavielle, Efficient Metropolis-Hastings Sampling for Nonlinear Mixed Effects Models -- G. Kratzer, Reinhard Furrer, and Pittavino Marta. Comparison Between Suitable Priors for Additive Bayesian Networks -- I. Peneva and R. Savage, A Bayesian Nonparametric Model for Integrative Clustering of Omics Data -- I. Schwabe, Bayesian Inference of Interaction Effects in Item-Level Hierarchical Twin Data -- PART III - Applied Statistics: K. Brock, L. Billingham, C. Yap, and G. Middleton, A Phase II Clinical Trial Design for Associated Co-Primary Efficacy and Toxicity Outcomes with Baseline Covariates -- E. Lanzarone, E. Scalco, A. Mastropietro, S. Marzi, and G. Rizzo, A Conditional Autoregressive Model for estimating Slow and Fast Diffusion from Magnetic Resonance Images -- D. Rocha, M. Scotto, C. Pinto, J. Nuno Tavares, and S. Gouveia, Simulation Study of HIV Temporal Patterns Using Bayesian Methodology -- A. Shenvi, J. Smith, R. Walton, and S. Eldridge, Modelling with Non-Stratified Chain Event Graphs -- O. Stevenson and B. Brewer, Modelling Career Trajectories of Cricket Players Using Gaussian Processes -- F. Turner, R. Wilkinson, C. Buck, J. Jones, and L. Sime, Ice Cores and Emulation: Learning More About Past Ice Sheet Shapes.
520
$a
This book presents a selection of peer-reviewed contributions to the fourth Bayesian Young Statisticians Meeting, BAYSM 2018, held at the University of Warwick on 2-3 July 2018. The meeting provided a valuable opportunity for young researchers, MSc students, PhD students, and postdocs interested in Bayesian statistics to connect with the broader Bayesian community. The proceedings offer cutting-edge papers on a wide range of topics in Bayesian statistics, identify important challenges and investigate promising methodological approaches, while also assessing current methods and stimulating applications. The book is intended for a broad audience of statisticians, and demonstrates how theoretical, methodological, and computational aspects are often combined in the Bayesian framework to successfully tackle complex problems.
650
0
$a
Bayesian statistical decision theory
$v
Textbooks.
$3
443102
650
1 4
$a
Statistical Theory and Methods.
$3
274054
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
275710
650
2 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
825914
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
274067
650
2 4
$a
Simulation and Modeling.
$3
273719
700
1
$a
Argiento, Raffaele.
$3
779949
700
1
$a
Durante, Daniele.
$3
855738
700
1
$a
Wade, Sara.
$3
855739
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer proceedings in mathematics & statistics ;
$v
v.19.
$3
569116
856
4 0
$u
https://doi.org/10.1007/978-3-030-30611-3
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000177706
電子館藏
1圖書
電子書
EB QA279.5 .B357 2018 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-30611-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入