語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Source separation and machine learning /
~
Chien, Jen-Tzung,
Source separation and machine learning /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Source separation and machine learning /Jen-Tzung Chien.
作者:
Chien, Jen-Tzung,
面頁冊數:
xxx, 353 pages :illustrations ;24 cm.
標題:
Blind source separation.
ISBN:
9780128177969
Source separation and machine learning /
Chien, Jen-Tzung,
Source separation and machine learning /
Jen-Tzung Chien. - xxx, 353 pages :illustrations ;24 cm.
Includes bibliographical references and index.
Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.
ISBN: 9780128177969$99.95
Nat. Bib. Agency Control No.: cam 2200265 i 4500Subjects--Topical Terms:
340034
Blind source separation.
LC Class. No.: TK5102.9 / .C45 2019
Source separation and machine learning /
LDR
:01638nam a2200277 a 4500
001
570462
003
VRT
005
20190920120000.0
008
200824t20192019enka b 001 0 eng d
016
0 4
$a
cam 2200265 i 4500
020
$a
9780128177969
$q
(paperback) :
$c
$99.95
020
$a
0128177969
$q
(paperback)
020
$z
9780128045770
$q
(ebook)
035
$a
(OCoLC)on1039335017
035
$a
vtls002226626
040
$a
YDX
$b
eng
$e
rda
$c
YDX
$d
UKMGB
$d
OCLCO
$d
OCLCQ
$d
OCLCF
$d
RCE
$d
YDXIT
$d
TKU
042
$a
nbic
050
4
$a
TK5102.9
$b
.C45 2019
100
1
$a
Chien, Jen-Tzung,
$e
author.
$3
857087
245
1 0
$a
Source separation and machine learning /
$c
Jen-Tzung Chien.
264
1
$a
London, United Kingdom :
$b
Academic Press,
$c
[2019]
264
4
$c
©2019.
300
$a
xxx, 353 pages :
$b
illustrations ;
$c
24 cm.
336
$a
text
$b
txt
$2
rdacontent.
337
$a
unmediated
$b
n
$2
rdamedia.
338
$a
volume
$b
nc
$2
rdacarrier.
504
$a
Includes bibliographical references and index.
520
$a
Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.
650
0
$a
Blind source separation.
$3
340034
650
0
$a
Machine learning.
$3
188639
筆 0 讀者評論
全部
西方語文圖書區(四樓)
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
320000724270
西方語文圖書區(四樓)
1圖書
一般圖書
TK5102.9 C533 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入