語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An elementary introduction to statis...
~
Harman, Gilbert.
An elementary introduction to statistical learning theory /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
An elementary introduction to statistical learning theory /Sanjeev Kulkarni, Gilbert Harman.
作者:
Kulkarni, Sanjeev.
其他作者:
Harman, Gilbert.
出版者:
Hoboken, N.J. :Wiley,c2011.
面頁冊數:
xiv, 209 p. :ill. ;24 cm.
標題:
Machine learningStatistical methods.
電子資源:
Inhaltsverzeichnis
電子資源:
http://www.loc.gov/catdir/enhancements/fy1210/2010045223-t.html
電子資源:
http://www.loc.gov/catdir/enhancements/fy1210/2010045223-b.html
電子資源:
http://www.loc.gov/catdir/enhancements/fy1210/2010045223-d.html
ISBN:
9780470641835 :
An elementary introduction to statistical learning theory /
Kulkarni, Sanjeev.
An elementary introduction to statistical learning theory /
Sanjeev Kulkarni, Gilbert Harman. - Hoboken, N.J. :Wiley,c2011. - xiv, 209 p. :ill. ;24 cm. - Wiley series in probability and statistics. - Wiley series in probability and statistics..
Includes bibliographical references and indexes.
Introduction: Classification, Learning, Features, and Applications -- Probability -- Probability Densities -- The Pattern Recognition Problem -- The Optimal Bayes Decision Rule -- Learning from Examples -- The Nearest Neighbor Rule -- Kernel Rules -- Neural Networks: Perceptrons -- Multilayer Networks -- PAC Learning -- VC Dimension -- Infinite VC Dimension -- The Function Estimation Problem -- Learning Function Estimation -- Simplicity -- Support Vector Machines -- Boosting -- Bibliography.
"A joint endeavor from leading researchers in the fields of philosophy and electrical engineering An Introduction to Statistical Learning Theory provides a broad and accessible introduction to rapidly evolving field of statistical pattern recognition and statistical learning theory. Exploring topics that are not often covered in introductory level books on statistical learning theory, including PAC learning, VC dimension, and simplicity, the authors present upper-undergraduate and graduate levels with the basic theory behind contemporary machine learning and uniquely suggest it serves as an excellent framework for philosophical thinking about inductive inference"--Back cover.
ISBN: 9780470641835 :$126.95
LCCN: 2010045223Subjects--Topical Terms:
305185
Machine learning
--Statistical methods.
LC Class. No.: Q325.5 / .K85 2011
Dewey Class. No.: 006.3/1
An elementary introduction to statistical learning theory /
LDR
:02594nam a2200337 a 4500
001
571085
005
20160601083133.0
008
200908s2011 njua b 001 0 eng
010
$a
2010045223
020
$a
9780470641835 :
$c
$126.95
020
$z
9781118023433 (ePDF)
020
$z
9781118023464 (ePub)
020
$z
9781118023471 (obook)
025
5 8
$a
cam a2200325 a 450
035
$a
(OCoLC)ocn685239939
035
$a
16550946
040
$a
DLC
$c
DLC
$d
YDX
$d
CDX
$d
YDXCP
$d
OIP
$d
Z@L
$d
DEBBG
$d
DLC
042
$a
pcc
050
0 0
$a
Q325.5
$b
.K85 2011
082
0 0
$a
006.3/1
$2
22
084
$a
ST 300
$2
rvk
100
1
$a
Kulkarni, Sanjeev.
$3
304941
245
1 3
$a
An elementary introduction to statistical learning theory /
$c
Sanjeev Kulkarni, Gilbert Harman.
260
$a
Hoboken, N.J. :
$b
Wiley,
$c
c2011.
300
$a
xiv, 209 p. :
$b
ill. ;
$c
24 cm.
490
1
$a
Wiley series in probability and statistics
504
$a
Includes bibliographical references and indexes.
505
0
$a
Introduction: Classification, Learning, Features, and Applications -- Probability -- Probability Densities -- The Pattern Recognition Problem -- The Optimal Bayes Decision Rule -- Learning from Examples -- The Nearest Neighbor Rule -- Kernel Rules -- Neural Networks: Perceptrons -- Multilayer Networks -- PAC Learning -- VC Dimension -- Infinite VC Dimension -- The Function Estimation Problem -- Learning Function Estimation -- Simplicity -- Support Vector Machines -- Boosting -- Bibliography.
520
$a
"A joint endeavor from leading researchers in the fields of philosophy and electrical engineering An Introduction to Statistical Learning Theory provides a broad and accessible introduction to rapidly evolving field of statistical pattern recognition and statistical learning theory. Exploring topics that are not often covered in introductory level books on statistical learning theory, including PAC learning, VC dimension, and simplicity, the authors present upper-undergraduate and graduate levels with the basic theory behind contemporary machine learning and uniquely suggest it serves as an excellent framework for philosophical thinking about inductive inference"--Back cover.
650
0
$a
Machine learning
$x
Statistical methods.
$3
305185
650
0
$a
Pattern recognition systems.
$3
183725
700
1
$a
Harman, Gilbert.
$3
304942
830
0
$a
Wiley series in probability and statistics.
$3
324851
856
$u
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=024567239&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
$z
Inhaltsverzeichnis
856
4 1
$3
Table of contents only
$u
http://www.loc.gov/catdir/enhancements/fy1210/2010045223-t.html
856
4 2
$3
Contributor biographical information
$u
http://www.loc.gov/catdir/enhancements/fy1210/2010045223-b.html
856
4 2
$3
Publisher description
$u
http://www.loc.gov/catdir/enhancements/fy1210/2010045223-d.html
筆 0 讀者評論
全部
西方語文圖書區(四樓)
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
320000726192
西方語文圖書區(四樓)
1圖書
一般圖書
Q325.5 K96 2011
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=024567239&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://www.loc.gov/catdir/enhancements/fy1210/2010045223-t.html
http://www.loc.gov/catdir/enhancements/fy1210/2010045223-b.html
http://www.loc.gov/catdir/enhancements/fy1210/2010045223-d.html
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入