語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Quantile regression for cross-sectio...
~
Guillen, Montserrat.
Quantile regression for cross-sectional and time series dataapplications in energy markets using R /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Quantile regression for cross-sectional and time series databy Jorge M. Uribe, Montserrat Guillen.
其他題名:
applications in energy markets using R /
作者:
Uribe, Jorge M.
其他作者:
Guillen, Montserrat.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
x, 63 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Quantile regression.
電子資源:
https://doi.org/10.1007/978-3-030-44504-1
ISBN:
9783030445041$q(electronic bk.)
Quantile regression for cross-sectional and time series dataapplications in energy markets using R /
Uribe, Jorge M.
Quantile regression for cross-sectional and time series data
applications in energy markets using R /[electronic resource] :by Jorge M. Uribe, Montserrat Guillen. - Cham :Springer International Publishing :2020. - x, 63 p. :ill., digital ;24 cm. - SpringerBriefs in finance,2193-1720. - SpringerBriefs in finance..
Why and When Should Quantile Regression Be Used?- A Case of Study: Modelling Energy Markets by the Means of Quantile Regression -- Quantile Regression: A Methodological Overview -- Cross-Sectional Quantile Regression -- Time Series Quantile Regression -- Goodness of Fit in Quantile Regression Models -- Novel Approaches in Quantile Regression -- What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix: Programs for Quantile Regression and Implementation in R.
This brief addresses the estimation of quantile regression models from a practical perspective, which will support researchers who need to use conditional quantile regression to measure economic relationships among a set of variables. It will also benefit students using the methodology for the first time, and practitioners at private or public organizations who are interested in modeling different fragments of the conditional distribution of a given variable. The book pursues a practical approach with reference to energy markets, helping readers learn the main features of the technique more quickly. Emphasis is placed on the implementation details and the correct interpretation of the quantile regression coefficients rather than on the technicalities of the method, unlike the approach used in the majority of the literature. All applications are illustrated with R.
ISBN: 9783030445041$q(electronic bk.)
Standard No.: 10.1007/978-3-030-44504-1doiSubjects--Topical Terms:
709809
Quantile regression.
LC Class. No.: QA278.2 / .U753 2020
Dewey Class. No.: 519.536
Quantile regression for cross-sectional and time series dataapplications in energy markets using R /
LDR
:02465nmm a2200337 a 4500
001
572559
003
DE-He213
005
20200730113650.0
006
m d
007
cr nn 008maaau
008
200925s2020 sz s 0 eng d
020
$a
9783030445041$q(electronic bk.)
020
$a
9783030445034$q(paper)
024
7
$a
10.1007/978-3-030-44504-1
$2
doi
035
$a
978-3-030-44504-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA278.2
$b
.U753 2020
072
7
$a
KCH
$2
bicssc
072
7
$a
BUS021000
$2
bisacsh
072
7
$a
KCH
$2
thema
082
0 4
$a
519.536
$2
23
090
$a
QA278.2
$b
.U76 2020
100
1
$a
Uribe, Jorge M.
$3
859655
245
1 0
$a
Quantile regression for cross-sectional and time series data
$h
[electronic resource] :
$b
applications in energy markets using R /
$c
by Jorge M. Uribe, Montserrat Guillen.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
x, 63 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in finance,
$x
2193-1720
505
0
$a
Why and When Should Quantile Regression Be Used?- A Case of Study: Modelling Energy Markets by the Means of Quantile Regression -- Quantile Regression: A Methodological Overview -- Cross-Sectional Quantile Regression -- Time Series Quantile Regression -- Goodness of Fit in Quantile Regression Models -- Novel Approaches in Quantile Regression -- What Have We Learned from Quantile Regression? Implications for Economics and Finance -- Appendix: Programs for Quantile Regression and Implementation in R.
520
$a
This brief addresses the estimation of quantile regression models from a practical perspective, which will support researchers who need to use conditional quantile regression to measure economic relationships among a set of variables. It will also benefit students using the methodology for the first time, and practitioners at private or public organizations who are interested in modeling different fragments of the conditional distribution of a given variable. The book pursues a practical approach with reference to energy markets, helping readers learn the main features of the technique more quickly. Emphasis is placed on the implementation details and the correct interpretation of the quantile regression coefficients rather than on the technicalities of the method, unlike the approach used in the majority of the literature. All applications are illustrated with R.
650
0
$a
Quantile regression.
$3
709809
650
0
$a
Time-series analysis.
$3
181890
650
0
$a
R (Computer program language)
$3
210846
650
1 4
$a
Econometrics.
$3
182271
650
2 4
$a
Quantitative Finance.
$3
274071
650
2 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
825914
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
275710
700
1
$a
Guillen, Montserrat.
$3
859656
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in finance.
$3
560887
856
4 0
$u
https://doi.org/10.1007/978-3-030-44504-1
950
$a
Economics and Finance (Springer-41170)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000179170
電子館藏
1圖書
電子書
EB QA278.2 .U76 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-44504-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入