語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Periods in quantum field theory and ...
~
Burgos Gil, Jose Ignacio.
Periods in quantum field theory and arithmeticICMAT, Madrid, Spain, September 15 - December 19, 2014 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Periods in quantum field theory and arithmeticedited by Jose Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl.
其他題名:
ICMAT, Madrid, Spain, September 15 - December 19, 2014 /
其他作者:
Burgos Gil, Jose Ignacio.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
x, 630 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Quantum field theoryProblems, exercises, etc.
電子資源:
https://doi.org/10.1007/978-3-030-37031-2
ISBN:
9783030370312$q(electronic bk.)
Periods in quantum field theory and arithmeticICMAT, Madrid, Spain, September 15 - December 19, 2014 /
Periods in quantum field theory and arithmetic
ICMAT, Madrid, Spain, September 15 - December 19, 2014 /[electronic resource] :edited by Jose Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl. - Cham :Springer International Publishing :2020. - x, 630 p. :ill., digital ;24 cm. - Springer proceedings in mathematics & statistics,v.3142194-1009 ;. - Springer proceedings in mathematics & statistics ;v.19..
I. Todorov, Perturbative quantum field theory meets number theory -- E. Panzer, Some open problems on Feynman periods -- S. Stieberger, Periods and Superstring Amplitudes -- O. Schlotterer -- The number theory of superstring amplitudes -- N. Matthes, Overview On Elliptic Multiple Zeta Values -- L. Adams, C. Bogner, S. Weinzierl, The Elliptic Sunrise -- C. Vergu, Polylogarithm identities, cluster algebras and the N = 4 supersymmetric theory -- H. Bachmann, Multiple Eisenstein series and q-analogues of multiple zeta values -- H. Bachmann, U. Kuhn, A dimension conjecture for q-analogues of multiple zeta values -- J. Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras -- J. Singer, q-Analogues of multiple zeta values and their applications in renormalization -- N. M. Nikolov, Vertex algebras and renormalization -- K. Rejzner, Renormalization and periods in perturbative Algebraic Quantum Field Theory -- C. Malvenuto, F. Patras, Symmetril moulds, generic group schemes, resummation of MZVs -- A. Salerno, L. Schneps, Mould theory and the double shuffle Lie algebra structure -- F. Chapoton, On some tree-indexed series with one and two parameters -- K. Ebrahimi-Fard, W. Steven Gray, D. Manchon, Evaluating Generating Functions for Periodic Multiple Polylogarithms -- D. Manchon, Arborified multiple zeta values -- L. Foissy, F. Patras, Lie theory for quasi-shuffle bialgebras -- H. Furusho, Galois action on knots II: Proalgebraic string links and knots -- H. Nakamura, Z. Wojtkowiak, On distribution formulas for complex and l-adic polylogarithms -- W. Zudilin, On a family of polynomials related to ζ(2,1)=ζ(3)
This book is the outcome of research initiatives formed during the special "Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matematicas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
ISBN: 9783030370312$q(electronic bk.)
Standard No.: 10.1007/978-3-030-37031-2doiSubjects--Topical Terms:
446414
Quantum field theory
--Problems, exercises, etc.
LC Class. No.: QC174.45.A1 / P475 2020
Dewey Class. No.: 530.143
Periods in quantum field theory and arithmeticICMAT, Madrid, Spain, September 15 - December 19, 2014 /
LDR
:04432nmm a2200337 a 4500
001
572799
003
DE-He213
005
20200805162401.0
006
m d
007
cr nn 008maaau
008
200925s2020 sz s 0 eng d
020
$a
9783030370312$q(electronic bk.)
020
$a
9783030370305$q(paper)
024
7
$a
10.1007/978-3-030-37031-2
$2
doi
035
$a
978-3-030-37031-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.45.A1
$b
P475 2020
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
530.143
$2
23
090
$a
QC174.45.A1
$b
P445 2020
245
0 0
$a
Periods in quantum field theory and arithmetic
$h
[electronic resource] :
$b
ICMAT, Madrid, Spain, September 15 - December 19, 2014 /
$c
edited by Jose Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
x, 630 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer proceedings in mathematics & statistics,
$x
2194-1009 ;
$v
v.314
505
0
$a
I. Todorov, Perturbative quantum field theory meets number theory -- E. Panzer, Some open problems on Feynman periods -- S. Stieberger, Periods and Superstring Amplitudes -- O. Schlotterer -- The number theory of superstring amplitudes -- N. Matthes, Overview On Elliptic Multiple Zeta Values -- L. Adams, C. Bogner, S. Weinzierl, The Elliptic Sunrise -- C. Vergu, Polylogarithm identities, cluster algebras and the N = 4 supersymmetric theory -- H. Bachmann, Multiple Eisenstein series and q-analogues of multiple zeta values -- H. Bachmann, U. Kuhn, A dimension conjecture for q-analogues of multiple zeta values -- J. Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras -- J. Singer, q-Analogues of multiple zeta values and their applications in renormalization -- N. M. Nikolov, Vertex algebras and renormalization -- K. Rejzner, Renormalization and periods in perturbative Algebraic Quantum Field Theory -- C. Malvenuto, F. Patras, Symmetril moulds, generic group schemes, resummation of MZVs -- A. Salerno, L. Schneps, Mould theory and the double shuffle Lie algebra structure -- F. Chapoton, On some tree-indexed series with one and two parameters -- K. Ebrahimi-Fard, W. Steven Gray, D. Manchon, Evaluating Generating Functions for Periodic Multiple Polylogarithms -- D. Manchon, Arborified multiple zeta values -- L. Foissy, F. Patras, Lie theory for quasi-shuffle bialgebras -- H. Furusho, Galois action on knots II: Proalgebraic string links and knots -- H. Nakamura, Z. Wojtkowiak, On distribution formulas for complex and l-adic polylogarithms -- W. Zudilin, On a family of polynomials related to ζ(2,1)=ζ(3)
520
$a
This book is the outcome of research initiatives formed during the special "Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matematicas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
650
0
$a
Quantum field theory
$v
Problems, exercises, etc.
$3
446414
650
1 4
$a
Algebraic Geometry.
$3
274807
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
522718
650
2 4
$a
Number Theory.
$3
274059
650
2 4
$a
Combinatorics.
$3
274788
700
1
$a
Burgos Gil, Jose Ignacio.
$3
860012
700
1
$a
Ebrahimi-Fard, Kurusch.
$3
824904
700
1
$a
Gangl, Herbert.
$3
860013
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer proceedings in mathematics & statistics ;
$v
v.19.
$3
569116
856
4 0
$u
https://doi.org/10.1007/978-3-030-37031-2
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000179410
電子館藏
1圖書
電子書
EB QC174.45.A1 P445 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-37031-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入