語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Arakelov geometry over Adelic curves
~
Chen, Huayi.
Arakelov geometry over Adelic curves
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Arakelov geometry over Adelic curvesby Huayi Chen, Atsushi Moriwaki.
作者:
Chen, Huayi.
其他作者:
Moriwaki, Atsushi.
出版者:
Singapore :Springer Singapore :2020.
面頁冊數:
xviii, 452 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Arakelov theory.
電子資源:
https://doi.org/10.1007/978-981-15-1728-0
ISBN:
9789811517280$q(electronic bk.)
Arakelov geometry over Adelic curves
Chen, Huayi.
Arakelov geometry over Adelic curves
[electronic resource] /by Huayi Chen, Atsushi Moriwaki. - Singapore :Springer Singapore :2020. - xviii, 452 p. :ill., digital ;24 cm. - Lecture notes in mathematics,22580075-8434 ;. - Lecture notes in mathematics ;2035..
Introduction -- Metrized vector bundles: local theory -- Local metrics -- Adelic curves -- Vector bundles on adelic curves: global theory -- Slopes of tensor product -- Adelic line bundles on arithmetic varieties -- Nakai-Moishezon's criterion -- Reminders on measure theory.
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil-Lang's height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai-Moishezon's criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.
ISBN: 9789811517280$q(electronic bk.)
Standard No.: 10.1007/978-981-15-1728-0doiSubjects--Topical Terms:
861059
Arakelov theory.
LC Class. No.: QA242.6 / .C446 2020
Dewey Class. No.: 516.35
Arakelov geometry over Adelic curves
LDR
:03051nmm a2200337 a 4500
001
573695
003
DE-He213
005
20200630144345.0
006
m d
007
cr nn 008maaau
008
200928s2020 si s 0 eng d
020
$a
9789811517280$q(electronic bk.)
020
$a
9789811517273$q(paper)
024
7
$a
10.1007/978-981-15-1728-0
$2
doi
035
$a
978-981-15-1728-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA242.6
$b
.C446 2020
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
090
$a
QA242.6
$b
.C518 2020
100
1
$a
Chen, Huayi.
$3
861057
245
1 0
$a
Arakelov geometry over Adelic curves
$h
[electronic resource] /
$c
by Huayi Chen, Atsushi Moriwaki.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xviii, 452 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2258
505
0
$a
Introduction -- Metrized vector bundles: local theory -- Local metrics -- Adelic curves -- Vector bundles on adelic curves: global theory -- Slopes of tensor product -- Adelic line bundles on arithmetic varieties -- Nakai-Moishezon's criterion -- Reminders on measure theory.
520
$a
The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil-Lang's height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai-Moishezon's criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.
650
0
$a
Arakelov theory.
$3
861059
650
1 4
$a
Algebraic Geometry.
$3
274807
650
2 4
$a
Commutative Rings and Algebras.
$3
274057
650
2 4
$a
Functional Analysis.
$3
274845
700
1
$a
Moriwaki, Atsushi.
$3
861058
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
https://doi.org/10.1007/978-981-15-1728-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000180055
電子館藏
1圖書
電子書
EB QA242.6 .C518 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-15-1728-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入