語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Macroeconomic forecasting in the era...
~
Fuleky, Peter.
Macroeconomic forecasting in the era of big datatheory and practice /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Macroeconomic forecasting in the era of big dataedited by Peter Fuleky.
其他題名:
theory and practice /
其他作者:
Fuleky, Peter.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xiii, 719 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Economic forecasting.
電子資源:
https://doi.org/10.1007/978-3-030-31150-6
ISBN:
9783030311506$q(electronic bk.)
Macroeconomic forecasting in the era of big datatheory and practice /
Macroeconomic forecasting in the era of big data
theory and practice /[electronic resource] :edited by Peter Fuleky. - Cham :Springer International Publishing :2020. - xiii, 719 p. :ill., digital ;24 cm. - Advanced studies in theoretical and applied econometrics,v.521570-5811 ;. - Advanced studies in theoretical and applied econometrics ;v.48..
Introduction: Sources and Types of Big Data for Macroeconomic Forecasting -- Capturing Dynamic Relationships: Dynamic Factor Models -- Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs -- Large Bayesian Vector Autoregressions -- Volatility Forecasting in a Data Rich Environment -- Neural Networks -- Seeking Parsimony: Penalized Time Series Regression -- Principal Component and Static Factor Analysis -- Subspace Methods -- Variable Selection and Feature Screening -- Dealing with Model Uncertainty: Frequentist Averaging -- Bayesian Model Averaging -- Bootstrap Aggregating and Random Forest -- Boosting -- Density Forecasting -- Forecast Evaluation -- Further Issues: Unit Roots and Cointegration -- Turning Points and Classification -- Robust Methods for High-dimensional Regression and Covariance Matrix Estimation -- Frequency Domain -- Hierarchical Forecasting.
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
ISBN: 9783030311506$q(electronic bk.)
Standard No.: 10.1007/978-3-030-31150-6doiSubjects--Topical Terms:
182801
Economic forecasting.
LC Class. No.: HB3730 / .M337 2020
Dewey Class. No.: 330.0112
Macroeconomic forecasting in the era of big datatheory and practice /
LDR
:02594nmm a2200337 a 4500
001
574057
003
DE-He213
005
20200311114909.0
006
m d
007
cr nn 008maaau
008
201007s2020 sz s 0 eng d
020
$a
9783030311506$q(electronic bk.)
020
$a
9783030311490$q(paper)
024
7
$a
10.1007/978-3-030-31150-6
$2
doi
035
$a
978-3-030-31150-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HB3730
$b
.M337 2020
072
7
$a
KCH
$2
bicssc
072
7
$a
BUS021000
$2
bisacsh
072
7
$a
KCH
$2
thema
082
0 4
$a
330.0112
$2
23
090
$a
HB3730
$b
.M174 2020
245
0 0
$a
Macroeconomic forecasting in the era of big data
$h
[electronic resource] :
$b
theory and practice /
$c
edited by Peter Fuleky.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xiii, 719 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advanced studies in theoretical and applied econometrics,
$x
1570-5811 ;
$v
v.52
505
0
$a
Introduction: Sources and Types of Big Data for Macroeconomic Forecasting -- Capturing Dynamic Relationships: Dynamic Factor Models -- Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs -- Large Bayesian Vector Autoregressions -- Volatility Forecasting in a Data Rich Environment -- Neural Networks -- Seeking Parsimony: Penalized Time Series Regression -- Principal Component and Static Factor Analysis -- Subspace Methods -- Variable Selection and Feature Screening -- Dealing with Model Uncertainty: Frequentist Averaging -- Bayesian Model Averaging -- Bootstrap Aggregating and Random Forest -- Boosting -- Density Forecasting -- Forecast Evaluation -- Further Issues: Unit Roots and Cointegration -- Turning Points and Classification -- Robust Methods for High-dimensional Regression and Covariance Matrix Estimation -- Frequency Domain -- Hierarchical Forecasting.
520
$a
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.
650
0
$a
Economic forecasting.
$3
182801
650
0
$a
Big data.
$3
609582
650
1 4
$a
Econometrics.
$3
182271
650
2 4
$a
Macroeconomics/Monetary Economics//Financial Economics.
$3
731063
650
2 4
$a
Big Data.
$3
760530
650
2 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
825914
650
2 4
$a
Big Data/Analytics.
$3
742047
700
1
$a
Fuleky, Peter.
$3
861607
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Advanced studies in theoretical and applied econometrics ;
$v
v.48.
$3
711749
856
4 0
$u
https://doi.org/10.1007/978-3-030-31150-6
950
$a
Economics and Finance (Springer-41170)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000180323
電子館藏
1圖書
電子書
EB HB3730 .M174 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-31150-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入