語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Evolutionary machine learning techni...
~
Aljarah, Ibrahim.
Evolutionary machine learning techniquesalgorithms and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Evolutionary machine learning techniquesedited by Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah.
其他題名:
algorithms and applications /
其他作者:
Mirjalili, Seyedali.
出版者:
Singapore :Springer Singapore :2020.
面頁冊數:
x, 286 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learningMathematics.
電子資源:
https://doi.org/10.1007/978-981-32-9990-0
ISBN:
9789813299900$q(electronic bk.)
Evolutionary machine learning techniquesalgorithms and applications /
Evolutionary machine learning techniques
algorithms and applications /[electronic resource] :edited by Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah. - Singapore :Springer Singapore :2020. - x, 286 p. :ill., digital ;24 cm. - Algorithms for intelligent systems,2524-7565. - Algorithms for intelligent systems..
This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.
ISBN: 9789813299900$q(electronic bk.)
Standard No.: 10.1007/978-981-32-9990-0doiSubjects--Topical Terms:
857106
Machine learning
--Mathematics.
LC Class. No.: Q325.5 / .E965 2020
Dewey Class. No.: 006.31
Evolutionary machine learning techniquesalgorithms and applications /
LDR
:02545nmm a2200325 a 4500
001
574175
003
DE-He213
005
20200317154105.0
006
m d
007
cr nn 008maaau
008
201007s2020 si s 0 eng d
020
$a
9789813299900$q(electronic bk.)
020
$a
9789813299894$q(paper)
024
7
$a
10.1007/978-981-32-9990-0
$2
doi
035
$a
978-981-32-9990-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.E965 2020
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.E93 2020
245
0 0
$a
Evolutionary machine learning techniques
$h
[electronic resource] :
$b
algorithms and applications /
$c
edited by Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
x, 286 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Algorithms for intelligent systems,
$x
2524-7565
520
$a
This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks. The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.
650
0
$a
Machine learning
$x
Mathematics.
$3
857106
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
567118
700
1
$a
Mirjalili, Seyedali.
$3
830154
700
1
$a
Faris, Hossam.
$3
861744
700
1
$a
Aljarah, Ibrahim.
$3
861745
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Algorithms for intelligent systems.
$3
857955
856
4 0
$u
https://doi.org/10.1007/978-981-32-9990-0
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000180441
電子館藏
1圖書
電子書
EB Q325.5 .E93 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-32-9990-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入