語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Radiomics and radiogenomics in neuro...
~
(1998 :)
Radiomics and radiogenomics in neuro-oncologyfirst International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Radiomics and radiogenomics in neuro-oncologyedited by Hassan Mohy-ud-Din, Saima Rathore.
其他題名:
first International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13 : proceedings /
其他題名:
RNO-AI 2019
其他作者:
Mohy-ud-Din, Hassan.
團體作者:
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
ix, 91 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Artificial intelligenceCongresses.Medical applications
電子資源:
https://doi.org/10.1007/978-3-030-40124-5
ISBN:
9783030401245$q(electronic bk.)
Radiomics and radiogenomics in neuro-oncologyfirst International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13 : proceedings /
Radiomics and radiogenomics in neuro-oncology
first International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13 : proceedings /[electronic resource] :RNO-AI 2019edited by Hassan Mohy-ud-Din, Saima Rathore. - Cham :Springer International Publishing :2020. - ix, 91 p. :ill. (some col.), digital ;24 cm. - Lecture notes in computer science,119910302-9743 ;. - Lecture notes in computer science ;4891..
Current Status of the Use of Machine Learning and Magnetic Resonance Imaging in the Field of Neuro- Radiomics -- Opportunities and Advances in Radiomics and Radiogenomics in Neuro-Oncology -- A Survey on Recent Advancements for AI Enabled Radiomics in Neuro-Oncology -- Multimodal MRI for Radiogenomic Analysis of PTEN Mutation in Glioblastoma -- Deep radiomic features from MRI scans predict survival outcome of recurrent glio-blastoma -- cuRadiomics: A GPU-based Radiomics Feature Extraction Toolkit -- On validating multimodal MRI based stratification of IDH genotype in high grade gliomas using CNNs and its comparison to radiomics -- Imaging signature of 1p/19q co-deletion status derived via machine learning in lower grade glioma -- A feature-pooling and signature-pooling method for feature selection for quantitative image analysis: application to a radiomics model for survival in glioma -- Radiomics-Enhanced Multi-Task Neural Network for Non-invasive Glioma Subtyp-ing and Segmentation.
This book constitutes the proceedings of the First International Workshop on Radiomics and Radiogenomics in Neuro-oncology, RNO-AI 2019, which was held in conjunction with MICCAI in Shenzhen, China, in October 2019. The 10 full papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with the development of tools that can automate the analysis and synthesis of neuro-oncologic imaging.
ISBN: 9783030401245$q(electronic bk.)
Standard No.: 10.1007/978-3-030-40124-5doiSubjects--Topical Terms:
442992
Artificial intelligence
--Medical applications--Congresses.
LC Class. No.: R859.7.A78 / R33 2019
Dewey Class. No.: 610.28563
Radiomics and radiogenomics in neuro-oncologyfirst International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13 : proceedings /
LDR
:02789nmm a2200385 a 4500
001
574763
003
DE-He213
005
20200224164753.0
006
m d
007
cr nn 008maaau
008
201016s2020 sz s 0 eng d
020
$a
9783030401245$q(electronic bk.)
020
$a
9783030401238$q(paper)
024
7
$a
10.1007/978-3-030-40124-5
$2
doi
035
$a
978-3-030-40124-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
R859.7.A78
$b
R33 2019
072
7
$a
UYT
$2
bicssc
072
7
$a
COM012000
$2
bisacsh
072
7
$a
UYT
$2
thema
072
7
$a
UYQV
$2
thema
082
0 4
$a
610.28563
$2
23
090
$a
R859.7.A78
$b
R129 2019
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Radiomics and radiogenomics in neuro-oncology
$h
[electronic resource] :
$b
first International Workshop, RNO-AI 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 13 : proceedings /
$c
edited by Hassan Mohy-ud-Din, Saima Rathore.
246
3
$a
RNO-AI 2019
246
3
$a
MICCAI 2019
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
ix, 91 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
11991
490
1
$a
Image processing, computer vision, pattern recognition, and graphics
505
0
$a
Current Status of the Use of Machine Learning and Magnetic Resonance Imaging in the Field of Neuro- Radiomics -- Opportunities and Advances in Radiomics and Radiogenomics in Neuro-Oncology -- A Survey on Recent Advancements for AI Enabled Radiomics in Neuro-Oncology -- Multimodal MRI for Radiogenomic Analysis of PTEN Mutation in Glioblastoma -- Deep radiomic features from MRI scans predict survival outcome of recurrent glio-blastoma -- cuRadiomics: A GPU-based Radiomics Feature Extraction Toolkit -- On validating multimodal MRI based stratification of IDH genotype in high grade gliomas using CNNs and its comparison to radiomics -- Imaging signature of 1p/19q co-deletion status derived via machine learning in lower grade glioma -- A feature-pooling and signature-pooling method for feature selection for quantitative image analysis: application to a radiomics model for survival in glioma -- Radiomics-Enhanced Multi-Task Neural Network for Non-invasive Glioma Subtyp-ing and Segmentation.
520
$a
This book constitutes the proceedings of the First International Workshop on Radiomics and Radiogenomics in Neuro-oncology, RNO-AI 2019, which was held in conjunction with MICCAI in Shenzhen, China, in October 2019. The 10 full papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with the development of tools that can automate the analysis and synthesis of neuro-oncologic imaging.
650
0
$a
Artificial intelligence
$x
Medical applications
$v
Congresses.
$3
442992
650
0
$a
Diagnostic imaging
$v
Congresses.
$3
387225
650
0
$a
Cancer
$x
Treatment
$x
Technological innovations
$v
Congresses.
$3
862481
650
1 4
$a
Image Processing and Computer Vision.
$3
274051
650
2 4
$a
Machine Learning.
$3
833608
650
2 4
$a
Information Systems and Communication Service.
$3
274025
650
2 4
$a
Computer Applications.
$3
273760
650
2 4
$a
Pattern Recognition.
$3
273706
700
1
$a
Mohy-ud-Din, Hassan.
$3
862479
700
1
$a
Rathore, Saima.
$3
862480
710
2
$a
SpringerLink (Online service)
$3
273601
711
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
830
0
$a
Image processing, computer vision, pattern recognition, and graphics.
$3
823073
856
4 0
$u
https://doi.org/10.1007/978-3-030-40124-5
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000180871
電子館藏
1圖書
電子書
EB R859.7.A78 R129 2019 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-40124-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入