語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data science in cybersecurity and cy...
~
Choo, Kim-Kwang Raymond.
Data science in cybersecurity and cyberthreat intelligence
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Data science in cybersecurity and cyberthreat intelligenceedited by Leslie F. Sikos, Kim-Kwang Raymond Choo.
其他作者:
Sikos, Leslie F.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xii, 129 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Computer security.
電子資源:
https://doi.org/10.1007/978-3-030-38788-4
ISBN:
9783030387884$q(electronic bk.)
Data science in cybersecurity and cyberthreat intelligence
Data science in cybersecurity and cyberthreat intelligence
[electronic resource] /edited by Leslie F. Sikos, Kim-Kwang Raymond Choo. - Cham :Springer International Publishing :2020. - xii, 129 p. :ill., digital ;24 cm. - Intelligent systems reference library,v.1771868-4394 ;. - Intelligent systems reference library ;v.24..
The Formal Representation of Cyberthreats for Automated Reasoning -- A Logic Programming Approach to Predict Enterprise-Targeted Cyberattacks -- Discovering Malicious URLs Using Machine Learning Techniques -- Machine Learning and Big Data Processing for Cybersecurity Data Analysis -- Systematic Analysis of Security Implementation for Internet of Health Things in Mobile Health Networks -- Seven Pitfalls of Using Data Science in Cybersecurity.
This book presents a collection of state-of-the-art approaches to utilizing machine learning, formal knowledge bases and rule sets, and semantic reasoning to detect attacks on communication networks, including IoT infrastructures, to automate malicious code detection, to efficiently predict cyberattacks in enterprises, to identify malicious URLs and DGA-generated domain names, and to improve the security of mHealth wearables. This book details how analyzing the likelihood of vulnerability exploitation using machine learning classifiers can offer an alternative to traditional penetration testing solutions. In addition, the book describes a range of techniques that support data aggregation and data fusion to automate data-driven analytics in cyberthreat intelligence, allowing complex and previously unknown cyberthreats to be identified and classified, and countermeasures to be incorporated in novel incident response and intrusion detection mechanisms.
ISBN: 9783030387884$q(electronic bk.)
Standard No.: 10.1007/978-3-030-38788-4doiSubjects--Topical Terms:
184416
Computer security.
LC Class. No.: QA76.9.A25 / D383 2020
Dewey Class. No.: 005.8
Data science in cybersecurity and cyberthreat intelligence
LDR
:02529nmm a2200349 a 4500
001
574994
003
DE-He213
005
20200714170331.0
006
m d
007
cr nn 008maaau
008
201016s2020 sz s 0 eng d
020
$a
9783030387884$q(electronic bk.)
020
$a
9783030387877$q(paper)
024
7
$a
10.1007/978-3-030-38788-4
$2
doi
035
$a
978-3-030-38788-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.A25
$b
D383 2020
072
7
$a
UN
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UN
$2
thema
072
7
$a
TB
$2
thema
082
0 4
$a
005.8
$2
23
090
$a
QA76.9.A25
$b
D232 2020
245
0 0
$a
Data science in cybersecurity and cyberthreat intelligence
$h
[electronic resource] /
$c
edited by Leslie F. Sikos, Kim-Kwang Raymond Choo.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xii, 129 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Intelligent systems reference library,
$x
1868-4394 ;
$v
v.177
505
0
$a
The Formal Representation of Cyberthreats for Automated Reasoning -- A Logic Programming Approach to Predict Enterprise-Targeted Cyberattacks -- Discovering Malicious URLs Using Machine Learning Techniques -- Machine Learning and Big Data Processing for Cybersecurity Data Analysis -- Systematic Analysis of Security Implementation for Internet of Health Things in Mobile Health Networks -- Seven Pitfalls of Using Data Science in Cybersecurity.
520
$a
This book presents a collection of state-of-the-art approaches to utilizing machine learning, formal knowledge bases and rule sets, and semantic reasoning to detect attacks on communication networks, including IoT infrastructures, to automate malicious code detection, to efficiently predict cyberattacks in enterprises, to identify malicious URLs and DGA-generated domain names, and to improve the security of mHealth wearables. This book details how analyzing the likelihood of vulnerability exploitation using machine learning classifiers can offer an alternative to traditional penetration testing solutions. In addition, the book describes a range of techniques that support data aggregation and data fusion to automate data-driven analytics in cyberthreat intelligence, allowing complex and previously unknown cyberthreats to be identified and classified, and countermeasures to be incorporated in novel incident response and intrusion detection mechanisms.
650
0
$a
Computer security.
$3
184416
650
1 4
$a
Data Engineering.
$3
839346
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Cybercrime.
$3
748274
650
2 4
$a
Computer Crime.
$3
833604
700
1
$a
Sikos, Leslie F.
$3
545201
700
1
$a
Choo, Kim-Kwang Raymond.
$3
337891
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Intelligent systems reference library ;
$v
v.24.
$3
558591
856
4 0
$u
https://doi.org/10.1007/978-3-030-38788-4
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000181102
電子館藏
1圖書
電子書
EB QA76.9.A25 D232 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-38788-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入