語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applied multiple imputationadvantage...
~
Kleinke, Kristian.
Applied multiple imputationadvantages, pitfalls, new developments and applications in R /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Applied multiple imputationby Kristian Kleinke ... [et al.].
其他題名:
advantages, pitfalls, new developments and applications in R /
其他作者:
Kleinke, Kristian.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xi, 292 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Multiple imputation (Statistics)
電子資源:
https://doi.org/10.1007/978-3-030-38164-6
ISBN:
9783030381646$q(electronic bk.)
Applied multiple imputationadvantages, pitfalls, new developments and applications in R /
Applied multiple imputation
advantages, pitfalls, new developments and applications in R /[electronic resource] :by Kristian Kleinke ... [et al.]. - Cham :Springer International Publishing :2020. - xi, 292 p. :ill., digital ;24 cm. - Statistics for social and behavioral sciences,2199-7357. - Statistics for social and behavioral sciences..
1 Introduction and Basic Concepts -- 2 Missing Data Mechanism and Ignorability -- 3 Missing Data Methods -- 4 Multiple Imputation: Theory -- 5 Multiple Imputation: Application -- 6 Multiple Imputation: New Developments -- A Appendices -- Index.
This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice) The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master's and PhD students with a sound basic knowledge of statistics.
ISBN: 9783030381646$q(electronic bk.)
Standard No.: 10.1007/978-3-030-38164-6doiSubjects--Topical Terms:
487081
Multiple imputation (Statistics)
LC Class. No.: HA31.2
Dewey Class. No.: 519.282
Applied multiple imputationadvantages, pitfalls, new developments and applications in R /
LDR
:02474nmm a2200337 a 4500
001
575138
003
DE-He213
005
20200721153101.0
006
m d
007
cr nn 008maaau
008
201016s2020 sz s 0 eng d
020
$a
9783030381646$q(electronic bk.)
020
$a
9783030381639$q(paper)
024
7
$a
10.1007/978-3-030-38164-6
$2
doi
035
$a
978-3-030-38164-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HA31.2
072
7
$a
JHBC
$2
bicssc
072
7
$a
SOC027000
$2
bisacsh
072
7
$a
JHBC
$2
thema
082
0 4
$a
519.282
$2
23
090
$a
HA31.2
$b
.A652 2020
245
0 0
$a
Applied multiple imputation
$h
[electronic resource] :
$b
advantages, pitfalls, new developments and applications in R /
$c
by Kristian Kleinke ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xi, 292 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Statistics for social and behavioral sciences,
$x
2199-7357
505
0
$a
1 Introduction and Basic Concepts -- 2 Missing Data Mechanism and Ignorability -- 3 Missing Data Methods -- 4 Multiple Imputation: Theory -- 5 Multiple Imputation: Application -- 6 Multiple Imputation: New Developments -- A Appendices -- Index.
520
$a
This book explores missing data techniques and provides a detailed and easy-to-read introduction to multiple imputation, covering the theoretical aspects of the topic and offering hands-on help with the implementation. It discusses the pros and cons of various techniques and concepts, including multiple imputation quality diagnostics, an important topic for practitioners. It also presents current research and new, practically relevant developments in the field, and demonstrates the use of recent multiple imputation techniques designed for situations where distributional assumptions of the classical multiple imputation solutions are violated. In addition, the book features numerous practical tutorials for widely used R software packages to generate multiple imputations (norm, pan and mice) The provided R code and data sets allow readers to reproduce all the examples and enhance their understanding of the procedures. This book is intended for social and health scientists and other quantitative researchers who analyze incompletely observed data sets, as well as master's and PhD students with a sound basic knowledge of statistics.
650
0
$a
Multiple imputation (Statistics)
$3
487081
650
0
$a
R (Computer program language)
$3
210846
650
1 4
$a
Statistics for Social Sciences, Humanities, Law.
$3
825904
650
2 4
$a
Psychological Methods/Evaluation.
$3
275095
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
274067
650
2 4
$a
Statistical Theory and Methods.
$3
274054
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
275710
700
1
$a
Kleinke, Kristian.
$3
862969
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Statistics for social and behavioral sciences.
$3
560039
856
4 0
$u
https://doi.org/10.1007/978-3-030-38164-6
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000181246
電子館藏
1圖書
電子書
EB HA31.2 .A652 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-38164-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入