語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Practical MATLAB deep learninga proj...
~
Paluszek, Michael.
Practical MATLAB deep learninga project-based approach /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Practical MATLAB deep learningby Michael Paluszek, Stephanie Thomas.
其他題名:
a project-based approach /
作者:
Paluszek, Michael.
其他作者:
Thomas, Stephanie.
出版者:
Berkeley, CA :Apress :2020.
面頁冊數:
xv, 252 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learning.
電子資源:
https://doi.org/10.1007/978-1-4842-5124-9
ISBN:
9781484251249$q(electronic bk.)
Practical MATLAB deep learninga project-based approach /
Paluszek, Michael.
Practical MATLAB deep learning
a project-based approach /[electronic resource] :by Michael Paluszek, Stephanie Thomas. - Berkeley, CA :Apress :2020. - xv, 252 p. :ill., digital ;24 cm.
1 What is Deep Learning? -- 2 MATLAB Machine and Deep Learning Toolboxes -- 3 Finding Circles with Deep Learning -- 4 Classifying Movies -- 5 Algorithmic Deep Learning -- 6 Tokamak Disruption Detection -- 7 Classifying a Pirouette -- 8 Completing Sentences -- 9 Terrain Based Navigation -- 10 Stock Prediction -- 11 Image Classification -- 12 Orbit Determination.
Harness the power of MATLAB for deep-learning challenges. This book provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. You'll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. Along the way, you'll learn to model complex systems, including the stock market, natural language, and angles-only orbit determination. You'll cover dynamics and control, and integrate deep-learning algorithms and approaches using MATLAB. You'll also apply deep learning to aircraft navigation using images. Finally, you'll carry out classification of ballet pirouettes using an inertial measurement unit to experiment with MATLAB's hardware capabilities. You will: Explore deep learning using MATLAB and compare it to algorithms Write a deep learning function in MATLAB and train it with examples Use MATLAB toolboxes related to deep learning Implement tokamak disruption prediction.
ISBN: 9781484251249$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-5124-9doiSubjects--Uniform Titles:
MATLAB.
Subjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5 / .P35 2020
Dewey Class. No.: 006.31
Practical MATLAB deep learninga project-based approach /
LDR
:02356nmm a2200337 a 4500
001
575270
003
DE-He213
005
20200207171529.0
006
m d
007
cr nn 008maaau
008
201016s2020 cau s 0 eng d
020
$a
9781484251249$q(electronic bk.)
020
$a
9781484251232$q(paper)
024
7
$a
10.1007/978-1-4842-5124-9
$2
doi
035
$a
978-1-4842-5124-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.P35 2020
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051010
$2
bisacsh
072
7
$a
UMX
$2
thema
072
7
$a
UMC
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.P184 2020
100
1
$a
Paluszek, Michael.
$3
732019
245
1 0
$a
Practical MATLAB deep learning
$h
[electronic resource] :
$b
a project-based approach /
$c
by Michael Paluszek, Stephanie Thomas.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2020.
300
$a
xv, 252 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1 What is Deep Learning? -- 2 MATLAB Machine and Deep Learning Toolboxes -- 3 Finding Circles with Deep Learning -- 4 Classifying Movies -- 5 Algorithmic Deep Learning -- 6 Tokamak Disruption Detection -- 7 Classifying a Pirouette -- 8 Completing Sentences -- 9 Terrain Based Navigation -- 10 Stock Prediction -- 11 Image Classification -- 12 Orbit Determination.
520
$a
Harness the power of MATLAB for deep-learning challenges. This book provides an introduction to deep learning and using MATLAB's deep-learning toolboxes. You'll see how these toolboxes provide the complete set of functions needed to implement all aspects of deep learning. Along the way, you'll learn to model complex systems, including the stock market, natural language, and angles-only orbit determination. You'll cover dynamics and control, and integrate deep-learning algorithms and approaches using MATLAB. You'll also apply deep learning to aircraft navigation using images. Finally, you'll carry out classification of ballet pirouettes using an inertial measurement unit to experiment with MATLAB's hardware capabilities. You will: Explore deep learning using MATLAB and compare it to algorithms Write a deep learning function in MATLAB and train it with examples Use MATLAB toolboxes related to deep learning Implement tokamak disruption prediction.
630
0 0
$a
MATLAB.
$3
181993
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Programming Languages, Compilers, Interpreters.
$3
274102
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Hardware and Maker.
$3
760520
650
2 4
$a
Mathematics of Computing.
$3
273710
650
2 4
$a
Programming Techniques.
$3
274470
700
1
$a
Thomas, Stephanie.
$3
210618
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-1-4842-5124-9
950
$a
Professional and Applied Computing (Springer-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000181377
電子館藏
1圖書
電子書
EB Q325.5 .P184 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-1-4842-5124-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入