語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning in aquaculturehunge...
~
Mohd Razman, Mohd Azraai.
Machine learning in aquaculturehunger classification of Lates calcarifer /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning in aquacultureby Mohd Azraai Mohd Razman ... [et al.].
其他題名:
hunger classification of Lates calcarifer /
其他作者:
Mohd Razman, Mohd Azraai.
出版者:
Singapore :Springer Singapore :2020.
面頁冊數:
vi, 60 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
FishesFeeding and feeds
電子資源:
https://doi.org/10.1007/978-981-15-2237-6
ISBN:
9789811522376$q(electronic bk.)
Machine learning in aquaculturehunger classification of Lates calcarifer /
Machine learning in aquaculture
hunger classification of Lates calcarifer /[electronic resource] :by Mohd Azraai Mohd Razman ... [et al.]. - Singapore :Springer Singapore :2020. - vi, 60 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology,2191-530X. - SpringerBriefs in applied sciences and technology..
1 Introduction -- 2 Monitoring and feeding integration of demand feeder systems -- 3 Image processing features extraction on fish behaviour -- 4 Time-series identification of fish feeding behaviour.
This book highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques. Understanding the underlying factors that affect fish growth is essential, since they have implications for higher productivity in fish farms. Computer vision and machine learning techniques make it possible to quantify the subjective perception of hunger behaviour and so allow food to be provided as necessary. The book analyses the conceptual framework of motion tracking, feeding schedule and prediction classifiers in order to classify the hunger state, and proposes a system comprising an automated feeder system, image-processing module, as well as machine learning classifiers. Furthermore, the system substitutes conventional, complex modelling techniques with a robust, artificial intelligence approach. The findings presented are of interest to researchers, fish farmers, and aquaculture technologist wanting to gain insights into the productivity of fish and fish behaviour.
ISBN: 9789811522376$q(electronic bk.)
Standard No.: 10.1007/978-981-15-2237-6doiSubjects--Topical Terms:
863566
Fishes
--Feeding and feeds
LC Class. No.: SH156 / .M643 2020
Dewey Class. No.: 597
Machine learning in aquaculturehunger classification of Lates calcarifer /
LDR
:02341nmm a2200337 a 4500
001
575503
003
DE-He213
005
20200501104640.0
006
m d
007
cr nn 008maaau
008
201027s2020 si s 0 eng d
020
$a
9789811522376$q(electronic bk.)
020
$a
9789811522369$q(paper)
024
7
$a
10.1007/978-981-15-2237-6
$2
doi
035
$a
978-981-15-2237-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
SH156
$b
.M643 2020
072
7
$a
RNKH
$2
bicssc
072
7
$a
SCI070010
$2
bisacsh
072
7
$a
RNKH
$2
thema
082
0 4
$a
597
$2
23
090
$a
SH156
$b
.M149 2020
245
0 0
$a
Machine learning in aquaculture
$h
[electronic resource] :
$b
hunger classification of Lates calcarifer /
$c
by Mohd Azraai Mohd Razman ... [et al.].
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
vi, 60 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology,
$x
2191-530X
505
0
$a
1 Introduction -- 2 Monitoring and feeding integration of demand feeder systems -- 3 Image processing features extraction on fish behaviour -- 4 Time-series identification of fish feeding behaviour.
520
$a
This book highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques. Understanding the underlying factors that affect fish growth is essential, since they have implications for higher productivity in fish farms. Computer vision and machine learning techniques make it possible to quantify the subjective perception of hunger behaviour and so allow food to be provided as necessary. The book analyses the conceptual framework of motion tracking, feeding schedule and prediction classifiers in order to classify the hunger state, and proposes a system comprising an automated feeder system, image-processing module, as well as machine learning classifiers. Furthermore, the system substitutes conventional, complex modelling techniques with a robust, artificial intelligence approach. The findings presented are of interest to researchers, fish farmers, and aquaculture technologist wanting to gain insights into the productivity of fish and fish behaviour.
650
0
$a
Fishes
$x
Feeding and feeds
$x
Data processing.
$3
863566
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Fish & Wildlife Biology & Management.
$3
283794
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Simulation and Modeling.
$3
273719
650
2 4
$a
Signal, Image and Speech Processing.
$3
273768
700
1
$a
Mohd Razman, Mohd Azraai.
$3
863565
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in applied sciences and technology.
$3
557662
856
4 0
$u
https://doi.org/10.1007/978-981-15-2237-6
950
$a
Biomedical and Life Sciences (Springer-11642)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000181459
電子館藏
1圖書
電子書
EB SH156 .M149 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-15-2237-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入