語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applied nature-inspired computingalg...
~
Ashour, Amira S.
Applied nature-inspired computingalgorithms and case studies /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Applied nature-inspired computingedited by Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya.
其他題名:
algorithms and case studies /
其他作者:
Dey, Nilanjan.
出版者:
Singapore :Springer Singapore :2020.
面頁冊數:
xii, 275 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Natural computation.
電子資源:
https://doi.org/10.1007/978-981-13-9263-4
ISBN:
9789811392634$q(electronic bk.)
Applied nature-inspired computingalgorithms and case studies /
Applied nature-inspired computing
algorithms and case studies /[electronic resource] :edited by Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya. - Singapore :Springer Singapore :2020. - xii, 275 p. :ill., digital ;24 cm. - Springer tracts in nature-inspired computing,2524-552X. - Springer tracts in nature-inspired computing..
Chapter 1. Particle Swarm Optimization of Morphological Filters for Electrocardiogram Baseline Drift Estimation -- Chapter 2. Detection of Breast Cancer using Fusion of MLO and CC View Features Through a Hybrid Technique Based on Binary Firefly algorithm and Optimum Path Forest Classification -- Chapter 3. Recommending Healthy Personalized Daily Menus - A Cuckoo Search based Hyper-Heuristic Approach -- Chapter 4. A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network -- Chapter 5. An Application of Binary Grey Wolf Optimizer (BGWO) variants for Unit Commitment Problem -- Chapter 6. Sensorineural hearing loss identification via discrete wavelet packet entropy and cat swarm optimization -- Chapter 7. Chaotic Variants of Grasshopper Optimisation Algorithm and their application to Protein Structure Prediction -- Chapter 8. Examination of Retinal Anatomical Structures - A Study with Spider Monkey Optimization Algorithm -- Chapter 9. Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparative Study -- Chapter 10. Parallel-series System Optimization by Weighting Sum Methods and Nature-inspired Computing -- Chapter 11. Development of Artificial Neural Networks trained by Heuristic Algorithms for Prediction of Exhaust Emissions and Performance of a Diesel Engine Fuelled with Biodiesel Blends.
This book presents a cutting-edge research procedure in the Nature-Inspired Computing (NIC) domain and its connections with computational intelligence areas in real-world engineering applications. It introduces readers to a broad range of algorithms, such as genetic algorithms, particle swarm optimization, the firefly algorithm, flower pollination algorithm, collision-based optimization algorithm, bat algorithm, ant colony optimization, and multi-agent systems. In turn, it provides an overview of meta-heuristic algorithms, comparing the advantages and disadvantages of each. Moreover, the book provides a brief outline of the integration of nature-inspired computing techniques and various computational intelligence paradigms, and highlights nature-inspired computing techniques in a range of applications, including: evolutionary robotics, sports training planning, assessment of water distribution systems, flood simulation and forecasting, traffic control, gene expression analysis, antenna array design, and scheduling/dynamic resource management.
ISBN: 9789811392634$q(electronic bk.)
Standard No.: 10.1007/978-981-13-9263-4doiSubjects--Topical Terms:
339160
Natural computation.
LC Class. No.: QA76.9.N37
Dewey Class. No.: 006.382
Applied nature-inspired computingalgorithms and case studies /
LDR
:03594nmm a2200337 a 4500
001
577715
003
DE-He213
005
20200220162353.0
006
m d
007
cr nn 008maaau
008
201203s2020 si s 0 eng d
020
$a
9789811392634$q(electronic bk.)
020
$a
9789811392627$q(paper)
024
7
$a
10.1007/978-981-13-9263-4
$2
doi
035
$a
978-981-13-9263-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.N37
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.382
$2
23
090
$a
QA76.9.N37
$b
A652 2020
245
0 0
$a
Applied nature-inspired computing
$h
[electronic resource] :
$b
algorithms and case studies /
$c
edited by Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xii, 275 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer tracts in nature-inspired computing,
$x
2524-552X
505
0
$a
Chapter 1. Particle Swarm Optimization of Morphological Filters for Electrocardiogram Baseline Drift Estimation -- Chapter 2. Detection of Breast Cancer using Fusion of MLO and CC View Features Through a Hybrid Technique Based on Binary Firefly algorithm and Optimum Path Forest Classification -- Chapter 3. Recommending Healthy Personalized Daily Menus - A Cuckoo Search based Hyper-Heuristic Approach -- Chapter 4. A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network -- Chapter 5. An Application of Binary Grey Wolf Optimizer (BGWO) variants for Unit Commitment Problem -- Chapter 6. Sensorineural hearing loss identification via discrete wavelet packet entropy and cat swarm optimization -- Chapter 7. Chaotic Variants of Grasshopper Optimisation Algorithm and their application to Protein Structure Prediction -- Chapter 8. Examination of Retinal Anatomical Structures - A Study with Spider Monkey Optimization Algorithm -- Chapter 9. Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparative Study -- Chapter 10. Parallel-series System Optimization by Weighting Sum Methods and Nature-inspired Computing -- Chapter 11. Development of Artificial Neural Networks trained by Heuristic Algorithms for Prediction of Exhaust Emissions and Performance of a Diesel Engine Fuelled with Biodiesel Blends.
520
$a
This book presents a cutting-edge research procedure in the Nature-Inspired Computing (NIC) domain and its connections with computational intelligence areas in real-world engineering applications. It introduces readers to a broad range of algorithms, such as genetic algorithms, particle swarm optimization, the firefly algorithm, flower pollination algorithm, collision-based optimization algorithm, bat algorithm, ant colony optimization, and multi-agent systems. In turn, it provides an overview of meta-heuristic algorithms, comparing the advantages and disadvantages of each. Moreover, the book provides a brief outline of the integration of nature-inspired computing techniques and various computational intelligence paradigms, and highlights nature-inspired computing techniques in a range of applications, including: evolutionary robotics, sports training planning, assessment of water distribution systems, flood simulation and forecasting, traffic control, gene expression analysis, antenna array design, and scheduling/dynamic resource management.
650
0
$a
Natural computation.
$3
339160
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Algorithm Analysis and Problem Complexity.
$3
273702
650
2 4
$a
Mathematics of Computing.
$3
273710
650
2 4
$a
Simulation and Modeling.
$3
273719
700
1
$a
Dey, Nilanjan.
$3
750057
700
1
$a
Ashour, Amira S.
$3
773082
700
1
$a
Bhattacharyya, Siddhartha.
$3
736923
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer tracts in nature-inspired computing.
$3
859875
856
4 0
$u
https://doi.org/10.1007/978-981-13-9263-4
950
$a
Intelligent Technologies and Robotics (Springer-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000182664
電子館藏
1圖書
電子書
EB QA76.9.N37 A652 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-13-9263-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入