語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematical theories of machine lea...
~
Iyengar, S. S.
Mathematical theories of machine learningtheory and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mathematical theories of machine learningby Bin Shi, S. S. Iyengar.
其他題名:
theory and applications /
作者:
Shi, Bin.
其他作者:
Iyengar, S. S.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xxi, 133 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Machine learningMathematics.
電子資源:
https://doi.org/10.1007/978-3-030-17076-9
ISBN:
9783030170769$q(electronic bk.)
Mathematical theories of machine learningtheory and applications /
Shi, Bin.
Mathematical theories of machine learning
theory and applications /[electronic resource] :by Bin Shi, S. S. Iyengar. - Cham :Springer International Publishing :2020. - xxi, 133 p. :ill., digital ;24 cm.
Chapter 1. Introduction -- Chapter 2. General Framework of Mathematics -- Chapter 3. Problem Formulation -- Chapter 4. Development of Novel Techniques of CoCoSSC Method -- Chapter 5. Further Discussions of the Proposed Method -- Chapter 6. Related Work on Geometry of Non-Convex Programs -- Chapter 7. Gradient Descent Converges to Minimizers -- Chapter 8. A Conservation Law Method Based on Optimization -- Chapter 9. Improved Sample Complexity in Sparse Subspace Clustering with Noisy and Missing Observations -- Chapter 10. Online Discovery for Stable and Grouping Causalities in Multi-Variate Time Series -- Chapter 11. Conclusion.
This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection. Provides a thorough look into the variety of mathematical theories of machine learning Presented in four parts, allowing for readers to easily navigate the complex theories Includes extensive empirical studies on both the synthetic and real application time series data.
ISBN: 9783030170769$q(electronic bk.)
Standard No.: 10.1007/978-3-030-17076-9doiSubjects--Topical Terms:
857106
Machine learning
--Mathematics.
LC Class. No.: Q325.5
Dewey Class. No.: 006.310151
Mathematical theories of machine learningtheory and applications /
LDR
:02743nmm a2200325 a 4500
001
578042
003
DE-He213
005
20200212172636.0
006
m d
007
cr nn 008maaau
008
201208s2020 sz s 0 eng d
020
$a
9783030170769$q(electronic bk.)
020
$a
9783030170752$q(paper)
024
7
$a
10.1007/978-3-030-17076-9
$2
doi
035
$a
978-3-030-17076-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
006.310151
$2
23
090
$a
Q325.5
$b
.S555 2020
100
1
$a
Shi, Bin.
$3
866657
245
1 0
$a
Mathematical theories of machine learning
$h
[electronic resource] :
$b
theory and applications /
$c
by Bin Shi, S. S. Iyengar.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xxi, 133 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1. Introduction -- Chapter 2. General Framework of Mathematics -- Chapter 3. Problem Formulation -- Chapter 4. Development of Novel Techniques of CoCoSSC Method -- Chapter 5. Further Discussions of the Proposed Method -- Chapter 6. Related Work on Geometry of Non-Convex Programs -- Chapter 7. Gradient Descent Converges to Minimizers -- Chapter 8. A Conservation Law Method Based on Optimization -- Chapter 9. Improved Sample Complexity in Sparse Subspace Clustering with Noisy and Missing Observations -- Chapter 10. Online Discovery for Stable and Grouping Causalities in Multi-Variate Time Series -- Chapter 11. Conclusion.
520
$a
This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection. Provides a thorough look into the variety of mathematical theories of machine learning Presented in four parts, allowing for readers to easily navigate the complex theories Includes extensive empirical studies on both the synthetic and real application time series data.
650
0
$a
Machine learning
$x
Mathematics.
$3
857106
650
1 4
$a
Communications Engineering, Networks.
$3
273745
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Information Storage and Retrieval.
$3
274190
650
2 4
$a
Big Data/Analytics.
$3
742047
700
1
$a
Iyengar, S. S.
$q
(Sundararaja S.)
$3
440114
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-3-030-17076-9
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000182940
電子館藏
1圖書
電子書
EB Q325.5 .S555 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-17076-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入