語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A matrix algebra approach to artific...
~
SpringerLink (Online service)
A matrix algebra approach to artificial intelligence
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A matrix algebra approach to artificial intelligenceby Xian-Da Zhang.
作者:
Zhang, Xian-Da.
出版者:
Singapore :Springer Singapore :2020.
面頁冊數:
xxxiv, 820 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Matrices.
電子資源:
https://doi.org/10.1007/978-981-15-2770-8
ISBN:
9789811527708$q(electronic bk.)
A matrix algebra approach to artificial intelligence
Zhang, Xian-Da.
A matrix algebra approach to artificial intelligence
[electronic resource] /by Xian-Da Zhang. - Singapore :Springer Singapore :2020. - xxxiv, 820 p. :ill., digital ;24 cm.
Part 1. Introduction to Matrix Algebra -- Chapter 1. Basic Matrix Computation -- Chapter 2. Matrix Differential -- Chapter 3. Gradient and Optimization -- Chapter 4. Solution of Linear Systems -- Chapter 5. Eigenvalue Decomposition -- Part 2. Artificial Intelligence -- Chapter 6. Machine Learning -- Chapter 7. Neural Networks -- Chapter 8. Support Vector Machines -- Chapter 9. Evolutionary Computation.
Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective. The book consists of two parts: the first discusses the fundamentals of matrix algebra in detail, while the second focuses on the applications of matrix algebra approaches in AI. Highlighting matrix algebra in graph-based learning and embedding, network embedding, convolutional neural networks and Pareto optimization theory, and discussing recent topics and advances, the book offers a valuable resource for scientists, engineers, and graduate students in various disciplines, including, but not limited to, computer science, mathematics and engineering.
ISBN: 9789811527708$q(electronic bk.)
Standard No.: 10.1007/978-981-15-2770-8doiSubjects--Topical Terms:
181876
Matrices.
LC Class. No.: QA188 / .Z436 2020
Dewey Class. No.: 512.9434
A matrix algebra approach to artificial intelligence
LDR
:02260nmm a2200325 a 4500
001
579491
003
DE-He213
005
20200522232725.0
006
m
007
cr
008
201229s2020
020
$a
9789811527708$q(electronic bk.)
020
$a
9789811527692$q(paper)
024
7
$a
10.1007/978-981-15-2770-8
$2
doi
035
$a
978-981-15-2770-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA188
$b
.Z436 2020
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
512.9434
$2
23
090
$a
QA188
$b
.Z63 2020
100
1
$a
Zhang, Xian-Da.
$3
868884
245
1 2
$a
A matrix algebra approach to artificial intelligence
$h
[electronic resource] /
$c
by Xian-Da Zhang.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2020.
300
$a
xxxiv, 820 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Part 1. Introduction to Matrix Algebra -- Chapter 1. Basic Matrix Computation -- Chapter 2. Matrix Differential -- Chapter 3. Gradient and Optimization -- Chapter 4. Solution of Linear Systems -- Chapter 5. Eigenvalue Decomposition -- Part 2. Artificial Intelligence -- Chapter 6. Machine Learning -- Chapter 7. Neural Networks -- Chapter 8. Support Vector Machines -- Chapter 9. Evolutionary Computation.
520
$a
Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective. The book consists of two parts: the first discusses the fundamentals of matrix algebra in detail, while the second focuses on the applications of matrix algebra approaches in AI. Highlighting matrix algebra in graph-based learning and embedding, network embedding, convolutional neural networks and Pareto optimization theory, and discussing recent topics and advances, the book offers a valuable resource for scientists, engineers, and graduate students in various disciplines, including, but not limited to, computer science, mathematics and engineering.
650
0
$a
Matrices.
$3
181876
650
0
$a
Artificial intelligence
$x
Mathematics.
$3
324997
650
1 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Math Applications in Computer Science.
$3
273991
650
2 4
$a
Linear and Multilinear Algebras, Matrix Theory.
$3
274063
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
https://doi.org/10.1007/978-981-15-2770-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000184077
電子館藏
1圖書
電子書
EB QA188 .Z63 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-15-2770-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入