語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Universal time-series forecasting wi...
~
Ryabko, Daniil.
Universal time-series forecasting with mixture predictors
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Universal time-series forecasting with mixture predictorsby Daniil Ryabko.
作者:
Ryabko, Daniil.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
viii, 85 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Time-series analysisData processing.
電子資源:
https://doi.org/10.1007/978-3-030-54304-4
ISBN:
9783030543044$q(electronic bk.)
Universal time-series forecasting with mixture predictors
Ryabko, Daniil.
Universal time-series forecasting with mixture predictors
[electronic resource] /by Daniil Ryabko. - Cham :Springer International Publishing :2020. - viii, 85 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Introduction -- Notation and Definitions -- Prediction in Total Variation: Characterizations -- Prediction in KL-Divergence -- Decision-Theoretic Interpretations -- Middle-Case: Combining Predictors Whose Loss Vanishes -- Conditions Under Which One Measure Is a Predictor for Another -- Conclusion and Outlook.
The author considers the problem of sequential probability forecasting in the most general setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.
ISBN: 9783030543044$q(electronic bk.)
Standard No.: 10.1007/978-3-030-54304-4doiSubjects--Topical Terms:
190935
Time-series analysis
--Data processing.
LC Class. No.: QA280 / .R93 2020
Dewey Class. No.: 519.55
Universal time-series forecasting with mixture predictors
LDR
:01725nmm a2200349 a 4500
001
585912
003
DE-He213
005
20200926173539.0
006
m d
007
cr nn 008maaau
008
210323s2020 sz s 0 eng d
020
$a
9783030543044$q(electronic bk.)
020
$a
9783030543037$q(paper)
024
7
$a
10.1007/978-3-030-54304-4
$2
doi
035
$a
978-3-030-54304-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA280
$b
.R93 2020
072
7
$a
UY
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
072
7
$a
UY
$2
thema
072
7
$a
UYA
$2
thema
082
0 4
$a
519.55
$2
23
090
$a
QA280
$b
.R988 2020
100
1
$a
Ryabko, Daniil.
$3
877176
245
1 0
$a
Universal time-series forecasting with mixture predictors
$h
[electronic resource] /
$c
by Daniil Ryabko.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
viii, 85 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Introduction -- Notation and Definitions -- Prediction in Total Variation: Characterizations -- Prediction in KL-Divergence -- Decision-Theoretic Interpretations -- Middle-Case: Combining Predictors Whose Loss Vanishes -- Conditions Under Which One Measure Is a Predictor for Another -- Conclusion and Outlook.
520
$a
The author considers the problem of sequential probability forecasting in the most general setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.
650
0
$a
Time-series analysis
$x
Data processing.
$3
190935
650
1 4
$a
Theory of Computation.
$3
274475
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Mathematics of Computing.
$3
273710
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in computer science.
$3
559641
856
4 0
$u
https://doi.org/10.1007/978-3-030-54304-4
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000189729
電子館藏
1圖書
電子書
EB QA280 .R988 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-54304-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入