語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fractional-in-time semilinear parabo...
~
Gal, Ciprian G.
Fractional-in-time semilinear parabolic equations and applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fractional-in-time semilinear parabolic equations and applicationsby Ciprian G. Gal, Mahamadi Warma.
作者:
Gal, Ciprian G.
其他作者:
Warma, Mahamadi.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xii, 184 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Fractional differential equations.
電子資源:
https://doi.org/10.1007/978-3-030-45043-4
ISBN:
9783030450434$q(electronic bk.)
Fractional-in-time semilinear parabolic equations and applications
Gal, Ciprian G.
Fractional-in-time semilinear parabolic equations and applications
[electronic resource] /by Ciprian G. Gal, Mahamadi Warma. - Cham :Springer International Publishing :2020. - xii, 184 p. :ill., digital ;24 cm. - Mathematiques et applications,841154-483X ;. - Mathematiques et applications ;79..
This book provides a unified analysis and scheme for the existence and uniqueness of strong and mild solutions to certain fractional kinetic equations. This class of equations is characterized by the presence of a nonlinear time-dependent source, generally of arbitrary growth in the unknown function, a time derivative in the sense of Caputo and the presence of a large class of diffusion operators. The global regularity problem is then treated separately and the analysis is extended to some systems of fractional kinetic equations, including prey-predator models of Volterra-Lotka type and chemical reactions models, all of them possibly containing some fractional kinetics. Besides classical examples involving the Laplace operator, subject to standard (namely, Dirichlet, Neumann, Robin, dynamic/Wentzell and Steklov) boundary conditions, the framework also includes non-standard diffusion operators of "fractional" type, subject to appropriate boundary conditions. This book is aimed at graduate students and researchers in mathematics, physics, mathematical engineering and mathematical biology whose research involves partial differential equations.
ISBN: 9783030450434$q(electronic bk.)
Standard No.: 10.1007/978-3-030-45043-4doiSubjects--Topical Terms:
709091
Fractional differential equations.
LC Class. No.: QA377
Dewey Class. No.: 515.3534
Fractional-in-time semilinear parabolic equations and applications
LDR
:02205nmm a2200325 a 4500
001
586246
003
DE-He213
005
20210128114916.0
006
m d
007
cr nn 008maaau
008
210323s2020 sz s 0 eng d
020
$a
9783030450434$q(electronic bk.)
020
$a
9783030450427$q(paper)
024
7
$a
10.1007/978-3-030-45043-4
$2
doi
035
$a
978-3-030-45043-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.3534
$2
23
090
$a
QA377
$b
.G146 2020
100
1
$a
Gal, Ciprian G.
$3
877624
245
1 0
$a
Fractional-in-time semilinear parabolic equations and applications
$h
[electronic resource] /
$c
by Ciprian G. Gal, Mahamadi Warma.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xii, 184 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Mathematiques et applications,
$x
1154-483X ;
$v
84
520
$a
This book provides a unified analysis and scheme for the existence and uniqueness of strong and mild solutions to certain fractional kinetic equations. This class of equations is characterized by the presence of a nonlinear time-dependent source, generally of arbitrary growth in the unknown function, a time derivative in the sense of Caputo and the presence of a large class of diffusion operators. The global regularity problem is then treated separately and the analysis is extended to some systems of fractional kinetic equations, including prey-predator models of Volterra-Lotka type and chemical reactions models, all of them possibly containing some fractional kinetics. Besides classical examples involving the Laplace operator, subject to standard (namely, Dirichlet, Neumann, Robin, dynamic/Wentzell and Steklov) boundary conditions, the framework also includes non-standard diffusion operators of "fractional" type, subject to appropriate boundary conditions. This book is aimed at graduate students and researchers in mathematics, physics, mathematical engineering and mathematical biology whose research involves partial differential equations.
650
0
$a
Fractional differential equations.
$3
709091
650
0
$a
Differential equations, Parabolic.
$3
247280
650
0
$a
Differential equations, Partial.
$3
189753
650
0
$a
Applied mathematics.
$3
377601
650
0
$a
Engineering mathematics.
$3
182072
650
1 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Applications of Mathematics.
$3
273744
650
2 4
$a
Mathematical Methods in Physics.
$3
273796
700
1
$a
Warma, Mahamadi.
$3
877625
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Mathematiques et applications ;
$v
79.
$3
761604
856
4 0
$u
https://doi.org/10.1007/978-3-030-45043-4
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000190066
電子館藏
1圖書
電子書
EB QA377 .G146 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-45043-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入