語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning for medical image r...
~
(1998 :)
Machine learning for medical image reconstructionthird International Workshop, MLMIR 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning for medical image reconstructionedited by Farah Deeba ... [et al.].
其他題名:
third International Workshop, MLMIR 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
其他題名:
MLMIR 2020
其他作者:
Deeba, Farah.
團體作者:
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
viii, 163 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Diagnostic imagingCongresses.Data processing
電子資源:
https://doi.org/10.1007/978-3-030-61598-7
ISBN:
9783030615987$q(electronic bk.)
Machine learning for medical image reconstructionthird International Workshop, MLMIR 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
Machine learning for medical image reconstruction
third International Workshop, MLMIR 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /[electronic resource] :MLMIR 2020edited by Farah Deeba ... [et al.]. - Cham :Springer International Publishing :2020. - viii, 163 p. :ill., digital ;24 cm. - Lecture notes in computer science,124500302-9743 ;. - Lecture notes in computer science ;4891..
Deep Learning for Magnetic Resonance Imaging -- 3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI -- Deep Parallel MRI Reconstruction Network Without Coil Sensitivities -- Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data -- Deep Recurrent Partial Fourier Reconstruction in Diffusion MRI -- Model-based Learning for Quantitative Susceptibility Mapping -- Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks -- Weakly-supervised Learning for Single-step Quantitative Susceptibility Mapping -- Data-Consistency in Latent Space and Online Update Strategy to Guide GAN for Fast MRI Reconstruction -- Extending LOUPE for K-space Under-sampling Pattern Optimization in Multi-coil MRI -- AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis -- Deep Learning for General Image Reconstruction -- A deep prior approach to magnetic particle imaging -- End-To-End Convolutional Neural Network for 3D Reconstruction of Knee Bones From Bi-Planar X-Ray Images -- Cellular/Vascular Reconstruction using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation -- Improving PET-CT Image Segmentation via Deep Multi-Modality Data Augmentation -- Stain Style Transfer of Histopathology Images Via Structure-Preserved Generative Learning.
This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.
ISBN: 9783030615987$q(electronic bk.)
Standard No.: 10.1007/978-3-030-61598-7doiSubjects--Topical Terms:
445765
Diagnostic imaging
--Data processing--Congresses.
LC Class. No.: RC78.7.D53 / M595 2020
Dewey Class. No.: 006.31
Machine learning for medical image reconstructionthird International Workshop, MLMIR 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
LDR
:03165nmm a2200373 a 4500
001
588794
003
DE-He213
005
20201019224543.0
006
m d
007
cr nn 008maaau
008
210525s2020 sz s 0 eng d
020
$a
9783030615987$q(electronic bk.)
020
$a
9783030615970$q(paper)
024
7
$a
10.1007/978-3-030-61598-7
$2
doi
035
$a
978-3-030-61598-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC78.7.D53
$b
M595 2020
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
RC78.7.D53
$b
M685 2020
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Machine learning for medical image reconstruction
$h
[electronic resource] :
$b
third International Workshop, MLMIR 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
$c
edited by Farah Deeba ... [et al.].
246
3
$a
MLMIR 2020
246
3
$a
MICCAI 2020
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
viii, 163 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
12450
490
1
$a
Image processing, computer vision, pattern recognition, and graphics
505
0
$a
Deep Learning for Magnetic Resonance Imaging -- 3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI -- Deep Parallel MRI Reconstruction Network Without Coil Sensitivities -- Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data -- Deep Recurrent Partial Fourier Reconstruction in Diffusion MRI -- Model-based Learning for Quantitative Susceptibility Mapping -- Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks -- Weakly-supervised Learning for Single-step Quantitative Susceptibility Mapping -- Data-Consistency in Latent Space and Online Update Strategy to Guide GAN for Fast MRI Reconstruction -- Extending LOUPE for K-space Under-sampling Pattern Optimization in Multi-coil MRI -- AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis -- Deep Learning for General Image Reconstruction -- A deep prior approach to magnetic particle imaging -- End-To-End Convolutional Neural Network for 3D Reconstruction of Knee Bones From Bi-Planar X-Ray Images -- Cellular/Vascular Reconstruction using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation -- Improving PET-CT Image Segmentation via Deep Multi-Modality Data Augmentation -- Stain Style Transfer of Histopathology Images Via Structure-Preserved Generative Learning.
520
$a
This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.
650
0
$a
Diagnostic imaging
$x
Data processing
$v
Congresses.
$3
445765
650
0
$a
Artificial intelligence
$x
Medical applications
$v
Congresses.
$3
442992
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
1 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Image Processing and Computer Vision.
$3
274051
650
2 4
$a
Computer Appl. in Social and Behavioral Sciences.
$3
274376
650
2 4
$a
Computers and Education.
$3
274532
650
2 4
$a
Computational Biology/Bioinformatics.
$3
274833
700
1
$a
Deeba, Farah.
$3
880352
710
2
$a
SpringerLink (Online service)
$3
273601
711
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
830
0
$a
Image processing, computer vision, pattern recognition, and graphics.
$3
823073
856
4 0
$u
https://doi.org/10.1007/978-3-030-61598-7
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000191331
電子館藏
1圖書
電子書
EB RC78.7.D53 M685 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-61598-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入