語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Thoracic image analysissecond intern...
~
(1998 :)
Thoracic image analysissecond international workshop, TIA 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Thoracic image analysisedited by Jens Petersen ... [et al.].
其他題名:
second international workshop, TIA 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
其他題名:
TIA 2020
其他作者:
Petersen, Jens.
團體作者:
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
x, 166 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
ChestCase studies.Imaging
電子資源:
https://doi.org/10.1007/978-3-030-62469-9
ISBN:
9783030624699$q(electronic bk.)
Thoracic image analysissecond international workshop, TIA 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
Thoracic image analysis
second international workshop, TIA 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /[electronic resource] :TIA 2020edited by Jens Petersen ... [et al.]. - Cham :Springer International Publishing :2020. - x, 166 p. :ill. (some col.), digital ;24 cm. - Lecture notes in computer science,125020302-9743 ;. - Lecture notes in computer science ;4891..
Multi-cavity Heart Segmentation in Non-contrast Non-ECG Gated CT Scans with F-CNN -- 3D Deep Convolutional Neural Network-based Ventilated Lung Segmentation using Multi-nuclear Hyperpolarized Gas MRI -- Lung Cancer Tumor Region Segmentation Using Recurrent 3D-DenseUNet -- 3D Probabilistic Segmentation and Volumetry from 2D Projection Images -- CovidDiagnosis: Deep Diagnosis of Covid-19 Patients using Chest X-rays -- Can We Trust Deep Learning Based Diagnosis? The Impact of Domain Shift in Chest Radiograph Classification -- A Weakly Supervised Deep Learning Framework for COVID-19 CT Detection and Analysis -- Deep Reinforcement Learning for Localization of the Aortic Annulus in Patients with Aortic Dissection -- Functional-Consistent CycleGAN for CT to Iodine Perfusion Map Translation -- MRI to CTA Translation for Pulmonary Artery Evaluation using CycleGANs Trained with Unpaired Data -- Semi-supervised Virtual Regression of Aortic Dissections Using 3D Generative Inpainting -- Registration-Invariant Biomechanical Features for Disease Staging of COPD in SPIROMICS -- Deep Group-wise Variational Diffeomorphic Image Registration.
This book constitutes the proceedings of the Second International Workshop on Thoracic Image Analysis, TIA 2020, held in Lima, Peru, in October 2020. Due to COVID-19 pandemic the conference was held virtually. COVID-19 infection has brought a lot of attention to lung imaging and the role of CT imaging in the diagnostic workflow of COVID-19 suspects is an important topic. The 14 full papers presented deal with all aspects of image analysis of thoracic data, including: image acquisition and reconstruction, segmentation, registration, quantification, visualization, validation, population-based modeling, biophysical modeling (computational anatomy), deep learning, image analysis in small animals, outcome-based research and novel infectious disease applications.
ISBN: 9783030624699$q(electronic bk.)
Standard No.: 10.1007/978-3-030-62469-9doiSubjects--Topical Terms:
558867
Chest
--Imaging--Case studies.
LC Class. No.: RC941 / .T53 2020
Dewey Class. No.: 617.540754
Thoracic image analysissecond international workshop, TIA 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
LDR
:03239nmm a2200385 a 4500
001
589384
003
DE-He213
005
20201103104552.0
006
m d
007
cr nn 008maaau
008
210601s2020 sz s 0 eng d
020
$a
9783030624699$q(electronic bk.)
020
$a
9783030624682$q(paper)
024
7
$a
10.1007/978-3-030-62469-9
$2
doi
035
$a
978-3-030-62469-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC941
$b
.T53 2020
072
7
$a
UYT
$2
bicssc
072
7
$a
COM012000
$2
bisacsh
072
7
$a
UYT
$2
thema
072
7
$a
UYQV
$2
thema
082
0 4
$a
617.540754
$2
23
090
$a
RC941
$b
.T551 2020
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Thoracic image analysis
$h
[electronic resource] :
$b
second international workshop, TIA 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020 : proceedings /
$c
edited by Jens Petersen ... [et al.].
246
3
$a
TIA 2020
246
3
$a
MICCAI 2020
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
x, 166 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
12502
490
1
$a
Image processing, computer vision, pattern recognition, and graphics
505
0
$a
Multi-cavity Heart Segmentation in Non-contrast Non-ECG Gated CT Scans with F-CNN -- 3D Deep Convolutional Neural Network-based Ventilated Lung Segmentation using Multi-nuclear Hyperpolarized Gas MRI -- Lung Cancer Tumor Region Segmentation Using Recurrent 3D-DenseUNet -- 3D Probabilistic Segmentation and Volumetry from 2D Projection Images -- CovidDiagnosis: Deep Diagnosis of Covid-19 Patients using Chest X-rays -- Can We Trust Deep Learning Based Diagnosis? The Impact of Domain Shift in Chest Radiograph Classification -- A Weakly Supervised Deep Learning Framework for COVID-19 CT Detection and Analysis -- Deep Reinforcement Learning for Localization of the Aortic Annulus in Patients with Aortic Dissection -- Functional-Consistent CycleGAN for CT to Iodine Perfusion Map Translation -- MRI to CTA Translation for Pulmonary Artery Evaluation using CycleGANs Trained with Unpaired Data -- Semi-supervised Virtual Regression of Aortic Dissections Using 3D Generative Inpainting -- Registration-Invariant Biomechanical Features for Disease Staging of COPD in SPIROMICS -- Deep Group-wise Variational Diffeomorphic Image Registration.
520
$a
This book constitutes the proceedings of the Second International Workshop on Thoracic Image Analysis, TIA 2020, held in Lima, Peru, in October 2020. Due to COVID-19 pandemic the conference was held virtually. COVID-19 infection has brought a lot of attention to lung imaging and the role of CT imaging in the diagnostic workflow of COVID-19 suspects is an important topic. The 14 full papers presented deal with all aspects of image analysis of thoracic data, including: image acquisition and reconstruction, segmentation, registration, quantification, visualization, validation, population-based modeling, biophysical modeling (computational anatomy), deep learning, image analysis in small animals, outcome-based research and novel infectious disease applications.
650
0
$a
Chest
$x
Imaging
$v
Case studies.
$3
558867
650
0
$a
Image analysis
$x
Mathematical models
$v
Congresses.
$3
881234
650
0
$a
Diagnostic imaging
$x
Data processing
$v
Congresses.
$3
445765
650
1 4
$a
Image Processing and Computer Vision.
$3
274051
650
2 4
$a
Computer Applications.
$3
273760
650
2 4
$a
Computing Milieux.
$3
275270
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Information Systems Applications (incl. Internet)
$3
530743
700
1
$a
Petersen, Jens.
$3
881233
710
2
$a
SpringerLink (Online service)
$3
273601
711
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
830
0
$a
Image processing, computer vision, pattern recognition, and graphics.
$3
823073
856
4 0
$u
https://doi.org/10.1007/978-3-030-62469-9
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000191819
電子館藏
1圖書
電子書
EB RC941 .T551 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-62469-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入