語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data science solutions on Azuretools...
~
Singh, Priyanshi.
Data science solutions on Azuretools and techniques using Databricks and MLOps /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Data science solutions on Azureby Julian Soh, Priyanshi Singh.
其他題名:
tools and techniques using Databricks and MLOps /
作者:
Soh, Julian.
其他作者:
Singh, Priyanshi.
出版者:
Berkeley, CA :Apress :2020.
面頁冊數:
xiii, 285 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Microsoft Azure (Computing platform)
電子資源:
https://doi.org/10.1007/978-1-4842-6405-8
ISBN:
9781484264058$q(electronic bk.)
Data science solutions on Azuretools and techniques using Databricks and MLOps /
Soh, Julian.
Data science solutions on Azure
tools and techniques using Databricks and MLOps /[electronic resource] :by Julian Soh, Priyanshi Singh. - Berkeley, CA :Apress :2020. - xiii, 285 p. :ill., digital ;24 cm.
Chapter 1: Data Science in the Modern Enterprise -- Chapter 2: Statistical Techniques and Concepts in Data Science -- Chapter 3: Data Preparation and Data Engineering Basics -- Chapter 4: Introduction to Azure Machine Learning -- Chapter 5: Hands on with Azure Machine Learning -- Chapter 6: Apache Spark, Big Data, and Azure Databricks -- Chapter 7: Hands-on with Azure Databricks -- Chapter 8: Machine Learning Operations.
Understand and learn the skills needed to use modern tools in Microsoft Azure. This book discusses how to practically apply these tools in the industry, and help drive the transformation of organizations into a knowledge and data-driven entity. It provides an end-to-end understanding of data science life cycle and the techniques to efficiently productionize workloads. The book starts with an introduction to data science and discusses the statistical techniques data scientists should know. You'll then move on to machine learning in Azure where you will review the basics of data preparation and engineering, along with Azure ML service and automated machine learning. You'll also explore Azure Databricks and learn how to deploy, create and manage the same. In the final chapters you'll go through machine learning operations in Azure followed by the practical implementation of artificial intelligence through machine learning. Data Science Solutions on Azure will reveal how the different Azure services work together using real life scenarios and how-to-build solutions in a single comprehensive cloud ecosystem. You will: Understand big data analytics with Spark in Azure Databricks Integrate with Azure services like Azure Machine Learning and Azure Synaps Deploy, publish and monitor your data science workloads with MLOps Review data abstraction, model management and versioning with GitHub.
ISBN: 9781484264058$q(electronic bk.)
Standard No.: 10.1007/978-1-4842-6405-8doiSubjects--Topical Terms:
763318
Microsoft Azure (Computing platform)
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Data science solutions on Azuretools and techniques using Databricks and MLOps /
LDR
:02855nmm a2200325 a 4500
001
591561
003
DE-He213
005
20210323160634.0
006
m d
007
cr nn 008maaau
008
210629s2020 cau s 0 eng d
020
$a
9781484264058$q(electronic bk.)
020
$a
9781484264041$q(paper)
024
7
$a
10.1007/978-1-4842-6405-8
$2
doi
035
$a
978-1-4842-6405-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UMP
$2
bicssc
072
7
$a
COM051380
$2
bisacsh
072
7
$a
UMP
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.S682 2021
100
1
$a
Soh, Julian.
$3
874751
245
1 0
$a
Data science solutions on Azure
$h
[electronic resource] :
$b
tools and techniques using Databricks and MLOps /
$c
by Julian Soh, Priyanshi Singh.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2020.
300
$a
xiii, 285 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Data Science in the Modern Enterprise -- Chapter 2: Statistical Techniques and Concepts in Data Science -- Chapter 3: Data Preparation and Data Engineering Basics -- Chapter 4: Introduction to Azure Machine Learning -- Chapter 5: Hands on with Azure Machine Learning -- Chapter 6: Apache Spark, Big Data, and Azure Databricks -- Chapter 7: Hands-on with Azure Databricks -- Chapter 8: Machine Learning Operations.
520
$a
Understand and learn the skills needed to use modern tools in Microsoft Azure. This book discusses how to practically apply these tools in the industry, and help drive the transformation of organizations into a knowledge and data-driven entity. It provides an end-to-end understanding of data science life cycle and the techniques to efficiently productionize workloads. The book starts with an introduction to data science and discusses the statistical techniques data scientists should know. You'll then move on to machine learning in Azure where you will review the basics of data preparation and engineering, along with Azure ML service and automated machine learning. You'll also explore Azure Databricks and learn how to deploy, create and manage the same. In the final chapters you'll go through machine learning operations in Azure followed by the practical implementation of artificial intelligence through machine learning. Data Science Solutions on Azure will reveal how the different Azure services work together using real life scenarios and how-to-build solutions in a single comprehensive cloud ecosystem. You will: Understand big data analytics with Spark in Azure Databricks Integrate with Azure services like Azure Machine Learning and Azure Synaps Deploy, publish and monitor your data science workloads with MLOps Review data abstraction, model management and versioning with GitHub.
650
0
$a
Microsoft Azure (Computing platform)
$3
763318
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Microsoft and .NET.
$3
760507
700
1
$a
Singh, Priyanshi.
$3
883134
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-1-4842-6405-8
950
$a
Professional and Applied Computing (SpringerNature-12059)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000192570
電子館藏
1圖書
電子書
EB Q325.5 .S682 2021 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-1-4842-6405-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入