語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Inductive logic programming29th Inte...
~
(1998 :)
Inductive logic programming29th International Conference, ILP 2019, Plovdiv, Bulgaria, September 3-5, 2019 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Inductive logic programmingedited by Dimitar Kazakov, Can Erten.
其他題名:
29th International Conference, ILP 2019, Plovdiv, Bulgaria, September 3-5, 2019 : proceedings /
其他題名:
ILP 2019
其他作者:
Kazakov, Dimitar.
團體作者:
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
ix, 145 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Logic programming
電子資源:
https://doi.org/10.1007/978-3-030-49210-6
ISBN:
9783030492106$q(electronic bk.)
Inductive logic programming29th International Conference, ILP 2019, Plovdiv, Bulgaria, September 3-5, 2019 : proceedings /
Inductive logic programming
29th International Conference, ILP 2019, Plovdiv, Bulgaria, September 3-5, 2019 : proceedings /[electronic resource] :ILP 2019edited by Dimitar Kazakov, Can Erten. - Cham :Springer International Publishing :2020. - ix, 145 p. :ill., digital ;24 cm. - Lecture notes in computer science,117700302-9743 ;. - Lecture notes in computer science ;4891..
CONNER: A Concurrent ILP Learner in Description Logic -- Towards Meta-interpretive Learning of Programming Language Semantics -- Towards an ILP Application in Machine Ethics -- On the Relation Between Loss Functions and T-Norms -- Rapid Restart Hill Climbing for Learning Description Logic Concepts -- Neural Networks for Relational Data -- Learning Logic Programs from Noisy State Transition Data -- A New Algorithm for Computing Least Generalization of a Set of Atoms -- LazyBum: Decision Tree Learning Using Lazy Propositionalization -- Weight Your Words: the Effect of Different Weighting Schemes on Wordification Performance -- Learning Probabilistic Logic Programs over Continuous Data.
This book constitutes the refereed conference proceedings of the 29th International Conference on Inductive Logic Programming, ILP 2019, held in Plovdiv, Bulgaria, in September 2019. The 11 papers presented were carefully reviewed and selected from numerous submissions. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data.
ISBN: 9783030492106$q(electronic bk.)
Standard No.: 10.1007/978-3-030-49210-6doiSubjects--Topical Terms:
295961
Logic programming
LC Class. No.: QA76.63 / .I47 2019
Dewey Class. No.: 005.115
Inductive logic programming29th International Conference, ILP 2019, Plovdiv, Bulgaria, September 3-5, 2019 : proceedings /
LDR
:02594nmm a2200361 a 4500
001
592877
003
DE-He213
005
20200703070814.0
006
m d
007
cr nn 008maaau
008
210727s2020 sz s 0 eng d
020
$a
9783030492106$q(electronic bk.)
020
$a
9783030492090$q(paper)
024
7
$a
10.1007/978-3-030-49210-6
$2
doi
035
$a
978-3-030-49210-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.63
$b
.I47 2019
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
005.115
$2
23
090
$a
QA76.63
$b
.I29 2019
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Inductive logic programming
$h
[electronic resource] :
$b
29th International Conference, ILP 2019, Plovdiv, Bulgaria, September 3-5, 2019 : proceedings /
$c
edited by Dimitar Kazakov, Can Erten.
246
3
$a
ILP 2019
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
ix, 145 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
11770
490
1
$a
Lecture notes in artificial intelligence
505
0
$a
CONNER: A Concurrent ILP Learner in Description Logic -- Towards Meta-interpretive Learning of Programming Language Semantics -- Towards an ILP Application in Machine Ethics -- On the Relation Between Loss Functions and T-Norms -- Rapid Restart Hill Climbing for Learning Description Logic Concepts -- Neural Networks for Relational Data -- Learning Logic Programs from Noisy State Transition Data -- A New Algorithm for Computing Least Generalization of a Set of Atoms -- LazyBum: Decision Tree Learning Using Lazy Propositionalization -- Weight Your Words: the Effect of Different Weighting Schemes on Wordification Performance -- Learning Probabilistic Logic Programs over Continuous Data.
520
$a
This book constitutes the refereed conference proceedings of the 29th International Conference on Inductive Logic Programming, ILP 2019, held in Plovdiv, Bulgaria, in September 2019. The 11 papers presented were carefully reviewed and selected from numerous submissions. Inductive Logic Programming (ILP) is a subfield of machine learning, which originally relied on logic programming as a uniform representation language for expressing examples, background knowledge and hypotheses. Due to its strong representation formalism, based on first-order logic, ILP provides an excellent means for multi-relational learning and data mining, and more generally for learning from structured data.
650
0
$a
Logic programming
$3
295961
650
0
$a
Induction (Logic)
$3
230199
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
1 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Mathematical Logic and Formal Languages.
$3
275383
650
2 4
$a
Logics and Meanings of Programs.
$3
275357
650
2 4
$a
Programming Languages, Compilers, Interpreters.
$3
274102
650
2 4
$a
Computer Applications.
$3
273760
650
2 4
$a
Information Systems and Communication Service.
$3
274025
700
1
$a
Kazakov, Dimitar.
$3
284511
700
1
$a
Erten, Can.
$3
884076
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
830
0
$a
Lecture notes in artificial intelligence.
$3
822012
856
4 0
$u
https://doi.org/10.1007/978-3-030-49210-6
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000192867
電子館藏
1圖書
電子書
EB QA76.63 .I29 2019 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-49210-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入