語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Intelligent feature selection for ma...
~
Hinders, Mark K.
Intelligent feature selection for machine learning using the dynamic wavelet fingerprint
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Intelligent feature selection for machine learning using the dynamic wavelet fingerprintby Mark K. Hinders.
作者:
Hinders, Mark K.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xiv, 346 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Machine learning.
電子資源:
https://doi.org/10.1007/978-3-030-49395-0
ISBN:
9783030493950$q(electronic bk.)
Intelligent feature selection for machine learning using the dynamic wavelet fingerprint
Hinders, Mark K.
Intelligent feature selection for machine learning using the dynamic wavelet fingerprint
[electronic resource] /by Mark K. Hinders. - Cham :Springer International Publishing :2020. - xiv, 346 p. :ill., digital ;24 cm.
Background and history -- Intelligent structural health monitoring with ultrasonic lamb waves -- Automatic detection of flaws in recorded music -- Pocket depth determination with an ultrasonographic periodontal probe -- Spectral intermezzo: Spirit security systems -- Lamb wave tomographic rays in pipes -- Classification of RFID tags with wavelet fingerprinting -- Pattern classification for interpreting sensor data from a walking-speed robot -- Cranks and charlatans and deepfakes.
This book discusses various applications of machine learning using a new approach, the dynamic wavelet fingerprint technique, to identify features for machine learning and pattern classification in time-domain signals. Whether for medical imaging or structural health monitoring, it develops analysis techniques and measurement technologies for the quantitative characterization of materials, tissues and structures by non-invasive means. Intelligent Feature Selection for Machine Learning using the Dynamic Wavelet Fingerprint begins by providing background information on machine learning and the wavelet fingerprint technique. It then progresses through six technical chapters, applying the methods discussed to particular real-world problems. Theses chapters are presented in such a way that they can be read on their own, depending on the reader's area of interest, or read together to provide a comprehensive overview of the topic. Given its scope, the book will be of interest to practitioners, engineers and researchers seeking to leverage the latest advances in machine learning in order to develop solutions to practical problems in structural health monitoring, medical imaging, autonomous vehicles, wireless technology, and historical conservation.
ISBN: 9783030493950$q(electronic bk.)
Standard No.: 10.1007/978-3-030-49395-0doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5 / .H55 2020
Dewey Class. No.: 006.31
Intelligent feature selection for machine learning using the dynamic wavelet fingerprint
LDR
:02774nmm a2200337 a 4500
001
593103
003
DE-He213
005
20200705020059.0
006
m d
007
cr nn 008maaau
008
210727s2020 sz s 0 eng d
020
$a
9783030493950$q(electronic bk.)
020
$a
9783030493943$q(paper)
024
7
$a
10.1007/978-3-030-49395-0
$2
doi
035
$a
978-3-030-49395-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.H55 2020
072
7
$a
TTBM
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
TTBM
$2
thema
072
7
$a
UYS
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.H662 2020
100
1
$a
Hinders, Mark K.
$3
357243
245
1 0
$a
Intelligent feature selection for machine learning using the dynamic wavelet fingerprint
$h
[electronic resource] /
$c
by Mark K. Hinders.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xiv, 346 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Background and history -- Intelligent structural health monitoring with ultrasonic lamb waves -- Automatic detection of flaws in recorded music -- Pocket depth determination with an ultrasonographic periodontal probe -- Spectral intermezzo: Spirit security systems -- Lamb wave tomographic rays in pipes -- Classification of RFID tags with wavelet fingerprinting -- Pattern classification for interpreting sensor data from a walking-speed robot -- Cranks and charlatans and deepfakes.
520
$a
This book discusses various applications of machine learning using a new approach, the dynamic wavelet fingerprint technique, to identify features for machine learning and pattern classification in time-domain signals. Whether for medical imaging or structural health monitoring, it develops analysis techniques and measurement technologies for the quantitative characterization of materials, tissues and structures by non-invasive means. Intelligent Feature Selection for Machine Learning using the Dynamic Wavelet Fingerprint begins by providing background information on machine learning and the wavelet fingerprint technique. It then progresses through six technical chapters, applying the methods discussed to particular real-world problems. Theses chapters are presented in such a way that they can be read on their own, depending on the reader's area of interest, or read together to provide a comprehensive overview of the topic. Given its scope, the book will be of interest to practitioners, engineers and researchers seeking to leverage the latest advances in machine learning in order to develop solutions to practical problems in structural health monitoring, medical imaging, autonomous vehicles, wireless technology, and historical conservation.
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Signal, Image and Speech Processing.
$3
273768
650
2 4
$a
Biomedical Engineering and Bioengineering.
$3
826326
650
2 4
$a
Materials Science, general.
$3
308687
650
2 4
$a
Control, Robotics, Mechatronics.
$3
339147
650
2 4
$a
Computer Science, general.
$3
274540
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-49395-0
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000193093
電子館藏
1圖書
電子書
EB Q325.5 .H662 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-49395-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入