語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nature-inspired computation in data ...
~
He, Xing-Shi.
Nature-inspired computation in data mining and machine learning
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nature-inspired computation in data mining and machine learningedited by Xin-She Yang, Xing-Shi He.
其他作者:
Yang, Xin-She.
出版者:
Cham :Springer International Publishing :2020.
面頁冊數:
xi, 273 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Natural computation.
電子資源:
https://doi.org/10.1007/978-3-030-28553-1
ISBN:
9783030285531$q(electronic bk.)
Nature-inspired computation in data mining and machine learning
Nature-inspired computation in data mining and machine learning
[electronic resource] /edited by Xin-She Yang, Xing-Shi He. - Cham :Springer International Publishing :2020. - xi, 273 p. :ill. (some col.), digital ;24 cm. - Studies in computational intelligence,v.8551860-949X ;. - Studies in computational intelligence ;v. 216..
This book reviews the latest developments in nature-inspired computation, with a focus on the cross-disciplinary applications in data mining and machine learning. Data mining, machine learning and nature-inspired computation are current hot research topics due to their importance in both theory and practical applications. Adopting an application-focused approach, each chapter introduces a specific topic, with detailed descriptions of relevant algorithms, extensive literature reviews and implementation details. Covering topics such as nature-inspired algorithms, swarm intelligence, classification, clustering, feature selection, cybersecurity, learning algorithms over cloud, extreme learning machines, object categorization, particle swarm optimization, flower pollination and firefly algorithms, and neural networks, it also presents case studies and applications, including classifications of crisis-related tweets, extraction of named entities in the Tamil language, performance-based prediction of diseases, and healthcare services. This book is both a valuable a reference resource and a practical guide for students, researchers and professionals in computer science, data and management sciences, artificial intelligence and machine learning.
ISBN: 9783030285531$q(electronic bk.)
Standard No.: 10.1007/978-3-030-28553-1doiSubjects--Topical Terms:
339160
Natural computation.
LC Class. No.: QA76.9.N37 / N37 2020
Dewey Class. No.: 006.38
Nature-inspired computation in data mining and machine learning
LDR
:02350nmm a2200325 a 4500
001
593220
003
DE-He213
005
20200706040907.0
006
m d
007
cr nn 008maaau
008
210727s2020 sz s 0 eng d
020
$a
9783030285531$q(electronic bk.)
020
$a
9783030285524$q(paper)
024
7
$a
10.1007/978-3-030-28553-1
$2
doi
035
$a
978-3-030-28553-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.N37
$b
N37 2020
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.38
$2
23
090
$a
QA76.9.N37
$b
N285 2020
245
0 0
$a
Nature-inspired computation in data mining and machine learning
$h
[electronic resource] /
$c
edited by Xin-She Yang, Xing-Shi He.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xi, 273 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.855
520
$a
This book reviews the latest developments in nature-inspired computation, with a focus on the cross-disciplinary applications in data mining and machine learning. Data mining, machine learning and nature-inspired computation are current hot research topics due to their importance in both theory and practical applications. Adopting an application-focused approach, each chapter introduces a specific topic, with detailed descriptions of relevant algorithms, extensive literature reviews and implementation details. Covering topics such as nature-inspired algorithms, swarm intelligence, classification, clustering, feature selection, cybersecurity, learning algorithms over cloud, extreme learning machines, object categorization, particle swarm optimization, flower pollination and firefly algorithms, and neural networks, it also presents case studies and applications, including classifications of crisis-related tweets, extraction of named entities in the Tamil language, performance-based prediction of diseases, and healthcare services. This book is both a valuable a reference resource and a practical guide for students, researchers and professionals in computer science, data and management sciences, artificial intelligence and machine learning.
650
0
$a
Natural computation.
$3
339160
650
0
$a
Data mining.
$3
184440
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
700
1
$a
Yang, Xin-She.
$3
522569
700
1
$a
He, Xing-Shi.
$3
841930
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
https://doi.org/10.1007/978-3-030-28553-1
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000193210
電子館藏
1圖書
電子書
EB QA76.9.N37 N285 2020 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-28553-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入