語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A machine learning based pairs tradi...
~
Horta, Nuno.
A machine learning based pairs trading investment strategy
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A machine learning based pairs trading investment strategyby Simao Moraes Sarmento, Nuno Horta.
作者:
Moraes Sarmento, Simao.
其他作者:
Horta, Nuno.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
ix, 104 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Machine learning.
電子資源:
https://doi.org/10.1007/978-3-030-47251-1
ISBN:
9783030472511$q(electronic bk.)
A machine learning based pairs trading investment strategy
Moraes Sarmento, Simao.
A machine learning based pairs trading investment strategy
[electronic resource] /by Simao Moraes Sarmento, Nuno Horta. - Cham :Springer International Publishing :2021. - ix, 104 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology, Computational intelligence. - SpringerBriefs in applied sciences and technology.Computational intelligence..
Introduction -- Pairs Trading - Background and Related Work -- Proposed Pairs Selection Framework -- Proposed Trading Model -- Implementation -- Results -- Conclusions and Future Work.
This book investigates the application of promising machine learning techniques to address two problems: (i) how to find profitable pairs while constraining the search space and (ii) how to avoid long decline periods due to prolonged divergent pairs. It also proposes the integration of an unsupervised learning algorithm, OPTICS, to handle problem (i), and demonstrates that the suggested technique can outperform the common pairs search methods, achieving an average portfolio Sharpe ratio of 3.79, in comparison to 3.58 and 2.59 obtained using standard approaches. For problem (ii), the authors introduce a forecasting-based trading model capable of reducing the periods of portfolio decline by 75%. However, this comes at the expense of decreasing overall profitability. The authors also test the proposed strategy using an ARMA model, an LSTM and an LSTM encoder-decoder.
ISBN: 9783030472511$q(electronic bk.)
Standard No.: 10.1007/978-3-030-47251-1doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5 / .M67 2021
Dewey Class. No.: 006.31
A machine learning based pairs trading investment strategy
LDR
:02169nmm a2200337 a 4500
001
595065
003
DE-He213
005
20200713073015.0
006
m d
007
cr nn 008maaau
008
211005s2021 sz s 0 eng d
020
$a
9783030472511$q(electronic bk.)
020
$a
9783030472504$q(paper)
024
7
$a
10.1007/978-3-030-47251-1
$2
doi
035
$a
978-3-030-47251-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.M67 2021
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M827 2021
100
1
$a
Moraes Sarmento, Simao.
$3
887201
245
1 2
$a
A machine learning based pairs trading investment strategy
$h
[electronic resource] /
$c
by Simao Moraes Sarmento, Nuno Horta.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
ix, 104 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology, Computational intelligence
505
0
$a
Introduction -- Pairs Trading - Background and Related Work -- Proposed Pairs Selection Framework -- Proposed Trading Model -- Implementation -- Results -- Conclusions and Future Work.
520
$a
This book investigates the application of promising machine learning techniques to address two problems: (i) how to find profitable pairs while constraining the search space and (ii) how to avoid long decline periods due to prolonged divergent pairs. It also proposes the integration of an unsupervised learning algorithm, OPTICS, to handle problem (i), and demonstrates that the suggested technique can outperform the common pairs search methods, achieving an average portfolio Sharpe ratio of 3.79, in comparison to 3.58 and 2.59 obtained using standard approaches. For problem (ii), the authors introduce a forecasting-based trading model capable of reducing the periods of portfolio decline by 75%. However, this comes at the expense of decreasing overall profitability. The authors also test the proposed strategy using an ARMA model, an LSTM and an LSTM encoder-decoder.
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Machine Learning.
$3
833608
650
2 4
$a
Economic Theory/Quantitative Economics/Mathematical Methods.
$3
731081
700
1
$a
Horta, Nuno.
$3
714245
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in applied sciences and technology.
$p
Computational intelligence.
$3
674590
856
4 0
$u
https://doi.org/10.1007/978-3-030-47251-1
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000195210
電子館藏
1圖書
電子書
EB Q325.5 .M827 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-47251-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入