語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advancing parametric optimizationon ...
~
Adelgren, Nathan.
Advancing parametric optimizationon multiparametric linear complementarity problems with parameters in general locations /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advancing parametric optimizationby Nathan Adelgren.
其他題名:
on multiparametric linear complementarity problems with parameters in general locations /
作者:
Adelgren, Nathan.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xii, 113 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Mathematical optimization.
電子資源:
https://doi.org/10.1007/978-3-030-61821-6
ISBN:
9783030618216$q(electronic bk.)
Advancing parametric optimizationon multiparametric linear complementarity problems with parameters in general locations /
Adelgren, Nathan.
Advancing parametric optimization
on multiparametric linear complementarity problems with parameters in general locations /[electronic resource] :by Nathan Adelgren. - Cham :Springer International Publishing :2021. - xii, 113 p. :ill., digital ;24 cm. - SpringerBriefs in optimization,2190-8354. - SpringerBriefs in optimization..
1. Introduction -- 2. Background on mpLCP -- 3. Algebraic Properties of Invariancy Regions -- 4. Phase 2: Partitioning the Parameter Space -- 5. Phase 1: Determining an Initial Feasible Solution -- 6. Further Considerations -- 7. Assessment of Performance -- 8. Conclusion -- Appendix A. Tableaux for Example 2.1 -- Appendix B. Tableaux for Example 2.2 -- References.
The theory presented in this work merges many concepts from mathematical optimization and real algebraic geometry. When unknown or uncertain data in an optimization problem is replaced with parameters, one obtains a multi-parametric optimization problem whose optimal solution comes in the form of a function of the parameters.The theory and methodology presented in this work allows one to solve both Linear Programs and convex Quadratic Programs containing parameters in any location within the problem data as well as multi-objective optimization problems with any number of convex quadratic or linear objectives and linear constraints. Applications of these classes of problems are extremely widespread, ranging from business and economics to chemical and environmental engineering. Prior to this work, no solution procedure existed for these general classes of problems except for the recently proposed algorithms.
ISBN: 9783030618216$q(electronic bk.)
Standard No.: 10.1007/978-3-030-61821-6doiSubjects--Topical Terms:
183292
Mathematical optimization.
LC Class. No.: QA402.5 / .A345 2021
Dewey Class. No.: 519.6
Advancing parametric optimizationon multiparametric linear complementarity problems with parameters in general locations /
LDR
:02399nmm a2200337 a 4500
001
597231
003
DE-He213
005
20210629150616.0
006
m d
007
cr nn 008maaau
008
211019s2021 sz s 0 eng d
020
$a
9783030618216$q(electronic bk.)
020
$a
9783030618209$q(paper)
024
7
$a
10.1007/978-3-030-61821-6
$2
doi
035
$a
978-3-030-61821-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
$b
.A345 2021
072
7
$a
PBU
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBU
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.A228 2021
100
1
$a
Adelgren, Nathan.
$3
890380
245
1 0
$a
Advancing parametric optimization
$h
[electronic resource] :
$b
on multiparametric linear complementarity problems with parameters in general locations /
$c
by Nathan Adelgren.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xii, 113 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in optimization,
$x
2190-8354
505
0
$a
1. Introduction -- 2. Background on mpLCP -- 3. Algebraic Properties of Invariancy Regions -- 4. Phase 2: Partitioning the Parameter Space -- 5. Phase 1: Determining an Initial Feasible Solution -- 6. Further Considerations -- 7. Assessment of Performance -- 8. Conclusion -- Appendix A. Tableaux for Example 2.1 -- Appendix B. Tableaux for Example 2.2 -- References.
520
$a
The theory presented in this work merges many concepts from mathematical optimization and real algebraic geometry. When unknown or uncertain data in an optimization problem is replaced with parameters, one obtains a multi-parametric optimization problem whose optimal solution comes in the form of a function of the parameters.The theory and methodology presented in this work allows one to solve both Linear Programs and convex Quadratic Programs containing parameters in any location within the problem data as well as multi-objective optimization problems with any number of convex quadratic or linear objectives and linear constraints. Applications of these classes of problems are extremely widespread, ranging from business and economics to chemical and environmental engineering. Prior to this work, no solution procedure existed for these general classes of problems except for the recently proposed algorithms.
650
0
$a
Mathematical optimization.
$3
183292
650
0
$a
Geometry, Algebraic.
$3
190843
650
1 4
$a
Optimization.
$3
274084
650
2 4
$a
Algebraic Geometry.
$3
274807
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in optimization.
$3
558249
856
4 0
$u
https://doi.org/10.1007/978-3-030-61821-6
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000195961
電子館藏
1圖書
電子書
EB QA402.5 .A228 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-61821-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入