語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mitigating process variability and s...
~
SpringerLink (Online service)
Mitigating process variability and soft errors at circuit-level for FinFETs
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mitigating process variability and soft errors at circuit-level for FinFETsby Alexandra Zimpeck ... [et al.].
其他作者:
Zimpeck, Alexandra.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xiii, 131 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Field-effect transistorsDesign and construction.
電子資源:
https://doi.org/10.1007/978-3-030-68368-9
ISBN:
9783030683689$q(electronic bk.)
Mitigating process variability and soft errors at circuit-level for FinFETs
Mitigating process variability and soft errors at circuit-level for FinFETs
[electronic resource] /by Alexandra Zimpeck ... [et al.]. - Cham :Springer International Publishing :2021. - xiii, 131 p. :ill., digital ;24 cm.
Chapter 1. Introduction -- Chapter 2. FinFET Technology -- Chapter 3. Reliability Challenges in FinFETs -- Chapter 4. Circuit-Level Mitigation Approaches -- Chapter 5. Evaluation Methodology -- Chapter 6. Process Variability Mitigation -- Chapter 7. Soft Error Mitigation -- Chapter 8. General Trade-offs -- Chapter 9. Final Remarks.
This book evaluates the influence of process variations (e.g. work-function fluctuations) and radiation-induced soft errors in a set of logic cells using FinFET technology, considering the 7nm technological node as a case study. Moreover, for accurate soft error estimation, the authors adopt a radiation event generator tool (MUSCA SEP3), which deals both with layout features and electrical properties of devices. The authors also explore four circuit-level techniques (e.g. transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor) as alternatives to attenuate the unwanted effects on FinFET logic cells. This book also evaluates the mitigation tendency when different levels of process variation, transistor sizing, and radiation particle characteristics are applied in the design. An overall comparison of all methods addressed by this work is provided allowing to trace a trade-off between the reliability gains and the design penalties of each approach regarding the area, performance, power consumption, single event transient (SET) pulse width, and SET cross-section. Explains how to measure the influence of process variability (e.g. work-function fluctuations) and radiation-induced soft errors in FinFET logic cells; Enables designers to improve the robustness of FinFET integrated circuits without focusing on manufacturing adjustments; Discusses the benefits and downsides of using circuit-level approaches such as transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor for mitigating the impact of process variability and soft errors; Evaluates the techniques described in the context of different test scenarios: distinct levels of process variations, transistor sizing, and different radiation features; Helps readers identify the best circuit design considering the target application and design requirements like area constraints or power/delay limitations.
ISBN: 9783030683689$q(electronic bk.)
Standard No.: 10.1007/978-3-030-68368-9doiSubjects--Topical Terms:
893655
Field-effect transistors
--Design and construction.
LC Class. No.: TK7871.95
Dewey Class. No.: 621.3815284
Mitigating process variability and soft errors at circuit-level for FinFETs
LDR
:03261nmm a2200325 a 4500
001
599480
003
DE-He213
005
20210706103350.0
006
m d
007
cr nn 008maaau
008
211027s2021 sz s 0 eng d
020
$a
9783030683689$q(electronic bk.)
020
$a
9783030683672$q(paper)
024
7
$a
10.1007/978-3-030-68368-9
$2
doi
035
$a
978-3-030-68368-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7871.95
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
072
7
$a
TJFC
$2
thema
082
0 4
$a
621.3815284
$2
23
090
$a
TK7871.95
$b
.M684 2021
245
0 0
$a
Mitigating process variability and soft errors at circuit-level for FinFETs
$h
[electronic resource] /
$c
by Alexandra Zimpeck ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiii, 131 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1. Introduction -- Chapter 2. FinFET Technology -- Chapter 3. Reliability Challenges in FinFETs -- Chapter 4. Circuit-Level Mitigation Approaches -- Chapter 5. Evaluation Methodology -- Chapter 6. Process Variability Mitigation -- Chapter 7. Soft Error Mitigation -- Chapter 8. General Trade-offs -- Chapter 9. Final Remarks.
520
$a
This book evaluates the influence of process variations (e.g. work-function fluctuations) and radiation-induced soft errors in a set of logic cells using FinFET technology, considering the 7nm technological node as a case study. Moreover, for accurate soft error estimation, the authors adopt a radiation event generator tool (MUSCA SEP3), which deals both with layout features and electrical properties of devices. The authors also explore four circuit-level techniques (e.g. transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor) as alternatives to attenuate the unwanted effects on FinFET logic cells. This book also evaluates the mitigation tendency when different levels of process variation, transistor sizing, and radiation particle characteristics are applied in the design. An overall comparison of all methods addressed by this work is provided allowing to trace a trade-off between the reliability gains and the design penalties of each approach regarding the area, performance, power consumption, single event transient (SET) pulse width, and SET cross-section. Explains how to measure the influence of process variability (e.g. work-function fluctuations) and radiation-induced soft errors in FinFET logic cells; Enables designers to improve the robustness of FinFET integrated circuits without focusing on manufacturing adjustments; Discusses the benefits and downsides of using circuit-level approaches such as transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor for mitigating the impact of process variability and soft errors; Evaluates the techniques described in the context of different test scenarios: distinct levels of process variations, transistor sizing, and different radiation features; Helps readers identify the best circuit design considering the target application and design requirements like area constraints or power/delay limitations.
650
0
$a
Field-effect transistors
$x
Design and construction.
$3
893655
650
0
$a
Field-effect transistors
$x
Reliability.
$3
893656
650
0
$a
Soft errors (Computer science)
$3
740885
650
1 4
$a
Circuits and Systems.
$3
274416
650
2 4
$a
Electronic Circuits and Devices.
$3
495609
700
1
$a
Zimpeck, Alexandra.
$3
893654
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-68368-9
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000198104
電子館藏
1圖書
電子書
EB TK7871.95 .M684 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-68368-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入