語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Introduction to geometrically nonlin...
~
Baitsch, Matthias.
Introduction to geometrically nonlinear continuum dislocation theoryFE implementation and application on subgrain formation in cubic single crystals under large strains /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Introduction to geometrically nonlinear continuum dislocation theoryby Christian B. Silbermann, Matthias Baitsch, Jorn Ihlemann.
其他題名:
FE implementation and application on subgrain formation in cubic single crystals under large strains /
作者:
Silbermann, Christian B.
其他作者:
Baitsch, Matthias.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xiii, 94 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
CrystalsPlastic properties.
電子資源:
https://doi.org/10.1007/978-3-030-63696-8
ISBN:
9783030636968$q(electronic bk.)
Introduction to geometrically nonlinear continuum dislocation theoryFE implementation and application on subgrain formation in cubic single crystals under large strains /
Silbermann, Christian B.
Introduction to geometrically nonlinear continuum dislocation theory
FE implementation and application on subgrain formation in cubic single crystals under large strains /[electronic resource] :by Christian B. Silbermann, Matthias Baitsch, Jorn Ihlemann. - Cham :Springer International Publishing :2021. - xiii, 94 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology. - SpringerBriefs in applied sciences and technology..
Introduction -- Nonlinear kinematics of a continuously dislocated crystal -- Crystal kinetics and -thermodynamics -- Special cases included in the theory -- Geometrical linearization of the theory -- Variational formulation of the theory -- Numerical solution with the finite element method -- FE simulation results -- Possibilities of experimental validation -- Conclusions and Discussion -- Elements of Tensor Calculus and Tensor Analysis -- Solutions and algorithms for nonlinear plasticity.
This book provides an introduction to geometrically non-linear single crystal plasticity with continuously distributed dislocations. A symbolic tensor notation is used to focus on the physics. The book also shows the implementation of the theory into the finite element method. Moreover, a simple simulation example demonstrates the capability of the theory to describe the emergence of planar lattice defects (subgrain boundaries) and introduces characteristics of pattern forming systems. Numerical challenges involved in the localization phenomena are discussed in detail.
ISBN: 9783030636968$q(electronic bk.)
Standard No.: 10.1007/978-3-030-63696-8doiSubjects--Topical Terms:
666649
Crystals
--Plastic properties.
LC Class. No.: QD933
Dewey Class. No.: 548.842
Introduction to geometrically nonlinear continuum dislocation theoryFE implementation and application on subgrain formation in cubic single crystals under large strains /
LDR
:02296nmm a2200349 a 4500
001
600156
003
DE-He213
005
20210421115751.0
006
m d
007
cr nn 008maaau
008
211104s2021 sz s 0 eng d
020
$a
9783030636968$q(electronic bk.)
020
$a
9783030636951$q(paper)
024
7
$a
10.1007/978-3-030-63696-8
$2
doi
035
$a
978-3-030-63696-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QD933
072
7
$a
TGM
$2
bicssc
072
7
$a
TEC021000
$2
bisacsh
072
7
$a
TGM
$2
thema
072
7
$a
TNC
$2
thema
082
0 4
$a
548.842
$2
23
090
$a
QD933
$b
.S582 2021
100
1
$a
Silbermann, Christian B.
$3
894647
245
1 0
$a
Introduction to geometrically nonlinear continuum dislocation theory
$h
[electronic resource] :
$b
FE implementation and application on subgrain formation in cubic single crystals under large strains /
$c
by Christian B. Silbermann, Matthias Baitsch, Jorn Ihlemann.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiii, 94 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology
505
0
$a
Introduction -- Nonlinear kinematics of a continuously dislocated crystal -- Crystal kinetics and -thermodynamics -- Special cases included in the theory -- Geometrical linearization of the theory -- Variational formulation of the theory -- Numerical solution with the finite element method -- FE simulation results -- Possibilities of experimental validation -- Conclusions and Discussion -- Elements of Tensor Calculus and Tensor Analysis -- Solutions and algorithms for nonlinear plasticity.
520
$a
This book provides an introduction to geometrically non-linear single crystal plasticity with continuously distributed dislocations. A symbolic tensor notation is used to focus on the physics. The book also shows the implementation of the theory into the finite element method. Moreover, a simple simulation example demonstrates the capability of the theory to describe the emergence of planar lattice defects (subgrain boundaries) and introduces characteristics of pattern forming systems. Numerical challenges involved in the localization phenomena are discussed in detail.
650
0
$a
Crystals
$x
Plastic properties.
$3
666649
650
0
$a
Continuum mechanics.
$3
190274
650
1 4
$a
Structural Materials.
$3
274623
650
2 4
$a
Classical and Continuum Physics.
$3
771188
700
1
$a
Baitsch, Matthias.
$3
894648
700
1
$a
Ihlemann, Jorn.
$3
894649
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in applied sciences and technology.
$3
557662
856
4 0
$u
https://doi.org/10.1007/978-3-030-63696-8
950
$a
Chemistry and Materials Science (SpringerNature-11644)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000198690
電子館藏
1圖書
電子書
EB QD933 .S582 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-63696-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入