語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep learning for hyperspectral imag...
~
Mughees, Atif.
Deep learning for hyperspectral image analysis and classification
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep learning for hyperspectral image analysis and classificationby Linmi Tao, Atif Mughees.
作者:
Tao, Linmi.
其他作者:
Mughees, Atif.
出版者:
Singapore :Springer Singapore :2021.
面頁冊數:
xii, 207 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Hyperspectral imagingData processing.
電子資源:
https://doi.org/10.1007/978-981-33-4420-4
ISBN:
9789813344204$q(electronic bk.)
Deep learning for hyperspectral image analysis and classification
Tao, Linmi.
Deep learning for hyperspectral image analysis and classification
[electronic resource] /by Linmi Tao, Atif Mughees. - Singapore :Springer Singapore :2021. - xii, 207 p. :ill., digital ;24 cm. - Engineering applications of computational methods,v.52662-3366 ;. - Engineering applications of computational methods ;v.2..
Introduction -- Hyperspectral Imaging System -- Classification Techniques for HSI -- Preprocessing: Noise Reduction/ Band Categorization for HSI -- Spatial Feature Extraction Using Segmentation -- Multiple Deep learning models for feature extraction in classification -- Deep learning for merging spatial and spectral information in classification -- Sparse cording for Hyperspectral Data -- Classification Applications of HSI classification -- Conclusion.
This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly. This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.
ISBN: 9789813344204$q(electronic bk.)
Standard No.: 10.1007/978-981-33-4420-4doiSubjects--Topical Terms:
894685
Hyperspectral imaging
--Data processing.
LC Class. No.: TA1637 / .T36 2021
Dewey Class. No.: 006.42
Deep learning for hyperspectral image analysis and classification
LDR
:02665nmm a2200337 a 4500
001
600199
003
DE-He213
005
20210220141026.0
006
m d
007
cr nn 008maaau
008
211104s2021 si s 0 eng d
020
$a
9789813344204$q(electronic bk.)
020
$a
9789813344198$q(paper)
024
7
$a
10.1007/978-981-33-4420-4
$2
doi
035
$a
978-981-33-4420-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA1637
$b
.T36 2021
072
7
$a
UYQM
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQM
$2
thema
082
0 4
$a
006.42
$2
23
090
$a
TA1637
$b
.T171 2021
100
1
$a
Tao, Linmi.
$3
894683
245
1 0
$a
Deep learning for hyperspectral image analysis and classification
$h
[electronic resource] /
$c
by Linmi Tao, Atif Mughees.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
xii, 207 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Engineering applications of computational methods,
$x
2662-3366 ;
$v
v.5
505
0
$a
Introduction -- Hyperspectral Imaging System -- Classification Techniques for HSI -- Preprocessing: Noise Reduction/ Band Categorization for HSI -- Spatial Feature Extraction Using Segmentation -- Multiple Deep learning models for feature extraction in classification -- Deep learning for merging spatial and spectral information in classification -- Sparse cording for Hyperspectral Data -- Classification Applications of HSI classification -- Conclusion.
520
$a
This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly. This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.
650
0
$a
Hyperspectral imaging
$x
Data processing.
$3
894685
650
0
$a
Machine learning.
$3
188639
650
0
$a
Image processing
$x
Digital techniques.
$3
182119
650
0
$a
Automatic classification.
$3
514236
650
1 4
$a
Machine Learning.
$3
833608
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
274492
650
2 4
$a
Image Processing and Computer Vision.
$3
274051
650
2 4
$a
Signal, Image and Speech Processing.
$3
273768
700
1
$a
Mughees, Atif.
$3
894684
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Engineering applications of computational methods ;
$v
v.2.
$3
869168
856
4 0
$u
https://doi.org/10.1007/978-981-33-4420-4
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000198733
電子館藏
1圖書
電子書
EB TA1637 .T171 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-33-4420-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入