語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Android malware detection using mach...
~
Karbab, ElMouatez Billah.
Android malware detection using machine learningdata-driven fingerprinting and threat intelligence /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Android malware detection using machine learningby ElMouatez Billah Karbab ... [et al.].
其他題名:
data-driven fingerprinting and threat intelligence /
其他作者:
Karbab, ElMouatez Billah.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xiv, 202 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Malware (Computer software)Congresses.
電子資源:
https://doi.org/10.1007/978-3-030-74664-3
ISBN:
9783030746643$q(electronic bk.)
Android malware detection using machine learningdata-driven fingerprinting and threat intelligence /
Android malware detection using machine learning
data-driven fingerprinting and threat intelligence /[electronic resource] :by ElMouatez Billah Karbab ... [et al.]. - Cham :Springer International Publishing :2021. - xiv, 202 p. :ill., digital ;24 cm. - Advances in information security,v.861568-2633 ;. - Advances in information security ;12..
Introduction -- Background and Related Work -- Fingerprinting Android Malware Packages -- Robust Android Malicious Community Fingerprinting -- Android Malware Fingerprinting Using Dynamic Analysis -- Fingerprinting Cyber-Infrastructures of Android Malware -- Portable Supervised Malware Fingerprinting using Deep Learning -- Resilient and Adaptive Android Malware Fingerprinting and Detection -- Conclusion.
The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures. First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Based on this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware. The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.
ISBN: 9783030746643$q(electronic bk.)
Standard No.: 10.1007/978-3-030-74664-3doiSubjects--Uniform Titles:
Android (Electronic resource)
Subjects--Topical Terms:
451427
Malware (Computer software)
--Congresses.
LC Class. No.: QA76.76.C68
Dewey Class. No.: 005.88
Android malware detection using machine learningdata-driven fingerprinting and threat intelligence /
LDR
:03619nmm a2200337 a 4500
001
602009
003
DE-He213
005
20210710114750.0
006
m d
007
cr nn 008maaau
008
211112s2021 sz s 0 eng d
020
$a
9783030746643$q(electronic bk.)
020
$a
9783030746636$q(paper)
024
7
$a
10.1007/978-3-030-74664-3
$2
doi
035
$a
978-3-030-74664-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.76.C68
072
7
$a
UTN
$2
bicssc
072
7
$a
COM043050
$2
bisacsh
072
7
$a
UTN
$2
thema
082
0 4
$a
005.88
$2
23
090
$a
QA76.76.C68
$b
A574 2021
245
0 0
$a
Android malware detection using machine learning
$h
[electronic resource] :
$b
data-driven fingerprinting and threat intelligence /
$c
by ElMouatez Billah Karbab ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiv, 202 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advances in information security,
$x
1568-2633 ;
$v
v.86
505
0
$a
Introduction -- Background and Related Work -- Fingerprinting Android Malware Packages -- Robust Android Malicious Community Fingerprinting -- Android Malware Fingerprinting Using Dynamic Analysis -- Fingerprinting Cyber-Infrastructures of Android Malware -- Portable Supervised Malware Fingerprinting using Deep Learning -- Resilient and Adaptive Android Malware Fingerprinting and Detection -- Conclusion.
520
$a
The authors develop a malware fingerprinting framework to cover accurate android malware detection and family attribution in this book. The authors emphasize the following: (1) the scalability over a large malware corpus; (2) the resiliency to common obfuscation techniques; (3) the portability over different platforms and architectures. First, the authors propose an approximate fingerprinting technique for android packaging that captures the underlying static structure of the android applications in the context of bulk and offline detection at the app-market level. This book proposes a malware clustering framework to perform malware clustering by building and partitioning the similarity network of malicious applications on top of this fingerprinting technique. Second, the authors propose an approximate fingerprinting technique that leverages dynamic analysis and natural language processing techniques to generate Android malware behavior reports. Based on this fingerprinting technique, the authors propose a portable malware detection framework employing machine learning classification. Third, the authors design an automatic framework to produce intelligence about the underlying malicious cyber-infrastructures of Android malware. The authors then leverage graph analysis techniques to generate relevant intelligence to identify the threat effects of malicious Internet activity associated with android malware. The authors elaborate on an effective android malware detection system, in the online detection context at the mobile device level. It is suitable for deployment on mobile devices, using machine learning classification on method call sequences. Also, it is resilient to common code obfuscation techniques and adaptive to operating systems and malware change overtime, using natural language processing and deep learning techniques. Researchers working in mobile and network security, machine learning and pattern recognition will find this book useful as a reference. Advanced-level students studying computer science within these topic areas will purchase this book as well.
630
0 0
$a
Android (Electronic resource)
$3
376300
650
0
$a
Malware (Computer software)
$v
Congresses.
$3
451427
650
0
$a
Computer security.
$3
184416
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Mobile and Network Security.
$3
825732
650
2 4
$a
Pattern Recognition.
$3
273706
650
2 4
$a
Mobile Computing.
$3
763350
700
1
$a
Karbab, ElMouatez Billah.
$3
897605
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
Advances in information security ;
$v
12.
$3
451557
856
4 0
$u
https://doi.org/10.1007/978-3-030-74664-3
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000199659
電子館藏
1圖書
電子書
EB QA76.76.C68 A574 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-74664-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入