語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Non-local cell adhesion modelssymmet...
~
Buttenschon, Andreas.
Non-local cell adhesion modelssymmetries and bifurcations in 1-D /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Non-local cell adhesion modelsby Andreas Buttenschon, Thomas Hillen.
其他題名:
symmetries and bifurcations in 1-D /
作者:
Buttenschon, Andreas.
其他作者:
Hillen, Thomas.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
viii, 152 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Cell adhesionMathematical models.
電子資源:
https://doi.org/10.1007/978-3-030-67111-2
ISBN:
9783030671112$q(electronic bk.)
Non-local cell adhesion modelssymmetries and bifurcations in 1-D /
Buttenschon, Andreas.
Non-local cell adhesion models
symmetries and bifurcations in 1-D /[electronic resource] :by Andreas Buttenschon, Thomas Hillen. - Cham :Springer International Publishing :2021. - viii, 152 p. :ill. (some col.), digital ;24 cm. - CMS/CAIMS books in mathematics,2730-650X. - CMS/CAIMS books in mathematics..
Introduction -- Preliminaries -- The Periodic Problem -- Basic Properties -- Local Bifurcation -- Global Bifurcation -- Non-local Equations with Boundary Conditions -- No-flux Boundary Conditions -- Discussion and future directions.
This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level.
ISBN: 9783030671112$q(electronic bk.)
Standard No.: 10.1007/978-3-030-67111-2doiSubjects--Topical Terms:
898206
Cell adhesion
--Mathematical models.
LC Class. No.: QH623 / .B88 2021
Dewey Class. No.: 571.6015118
Non-local cell adhesion modelssymmetries and bifurcations in 1-D /
LDR
:02178nmm a2200337 a 4500
001
602494
003
DE-He213
005
20210616105850.0
006
m d
007
cr nn 008maaau
008
211112s2021 sz s 0 eng d
020
$a
9783030671112$q(electronic bk.)
020
$a
9783030671105$q(paper)
024
7
$a
10.1007/978-3-030-67111-2
$2
doi
035
$a
978-3-030-67111-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH623
$b
.B88 2021
072
7
$a
PDE
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PDE
$2
thema
082
0 4
$a
571.6015118
$2
23
090
$a
QH623
$b
.B988 2021
100
1
$a
Buttenschon, Andreas.
$3
898203
245
1 0
$a
Non-local cell adhesion models
$h
[electronic resource] :
$b
symmetries and bifurcations in 1-D /
$c
by Andreas Buttenschon, Thomas Hillen.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
viii, 152 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
CMS/CAIMS books in mathematics,
$x
2730-650X
505
0
$a
Introduction -- Preliminaries -- The Periodic Problem -- Basic Properties -- Local Bifurcation -- Global Bifurcation -- Non-local Equations with Boundary Conditions -- No-flux Boundary Conditions -- Discussion and future directions.
520
$a
This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level.
650
0
$a
Cell adhesion
$x
Mathematical models.
$3
898206
650
1 4
$a
Mathematical and Computational Biology.
$3
514442
650
2 4
$a
Mathematical Modeling and Industrial Mathematics.
$3
274070
700
1
$a
Hillen, Thomas.
$3
898204
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
830
0
$a
CMS/CAIMS books in mathematics.
$3
898205
856
4 0
$u
https://doi.org/10.1007/978-3-030-67111-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000200144
電子館藏
1圖書
電子書
EB QH623 .B988 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-67111-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入