語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Representation learningpropositional...
~
Lavrac, Nada.
Representation learningpropositionalization and embeddings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Representation learningby Nada Lavrac, Vid Podpecan, Marko Robnik-Sikonja.
其他題名:
propositionalization and embeddings /
作者:
Lavrac, Nada.
其他作者:
Podpecan, Vid.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xvi, 163 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Machine learning.
電子資源:
https://doi.org/10.1007/978-3-030-68817-2
ISBN:
9783030688172$q(electronic bk.)
Representation learningpropositionalization and embeddings /
Lavrac, Nada.
Representation learning
propositionalization and embeddings /[electronic resource] :by Nada Lavrac, Vid Podpecan, Marko Robnik-Sikonja. - Cham :Springer International Publishing :2021. - xvi, 163 p. :ill., digital ;24 cm.
Introduction to Representation Learning -- Machine Learning Background -- Text Embeddings -- Propositionalization of Relational Data -- Graph and Heterogeneous Network Transformations -- Unified Representation Learning Approaches -- Many Faces of Representation Learning.
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
ISBN: 9783030688172$q(electronic bk.)
Standard No.: 10.1007/978-3-030-68817-2doiSubjects--Topical Terms:
188639
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Representation learningpropositionalization and embeddings /
LDR
:02426nmm a2200337 a 4500
001
602528
003
DE-He213
005
20210710054444.0
006
m d
007
cr nn 008maaau
008
211112s2021 sz s 0 eng d
020
$a
9783030688172$q(electronic bk.)
020
$a
9783030688165$q(paper)
024
7
$a
10.1007/978-3-030-68817-2
$2
doi
035
$a
978-3-030-68817-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UNF
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
072
7
$a
UNF
$2
thema
072
7
$a
UYQE
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.L414 2021
100
1
$a
Lavrac, Nada.
$3
280097
245
1 0
$a
Representation learning
$h
[electronic resource] :
$b
propositionalization and embeddings /
$c
by Nada Lavrac, Vid Podpecan, Marko Robnik-Sikonja.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xvi, 163 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction to Representation Learning -- Machine Learning Background -- Text Embeddings -- Propositionalization of Relational Data -- Graph and Heterogeneous Network Transformations -- Unified Representation Learning Approaches -- Many Faces of Representation Learning.
520
$a
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Data Structures.
$3
273992
650
2 4
$a
Numerical Analysis.
$3
275681
700
1
$a
Podpecan, Vid.
$3
898244
700
1
$a
Robnik-Sikonja, Marko.
$3
898245
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-68817-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000200178
電子館藏
1圖書
電子書
EB Q325.5 .L414 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-68817-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入