語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multimodal scene understandingalgori...
~
Murino, Vittorio.
Multimodal scene understandingalgorithms, applications and deep learning /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Multimodal scene understandingedited by Michael Ying Yang, Bodo Rosenhahn, Vittorio Murino.
其他題名:
algorithms, applications and deep learning /
其他作者:
Yang, Michael Ying.
出版者:
London ;Academic Press,2019.
面頁冊數:
1 online resource (ix, 412 p.) :ill. (some col.), maps
標題:
Computational intelligence.
電子資源:
https://www.sciencedirect.com/science/book/9780128173589
ISBN:
9780128173596 (electronic bk.)
Multimodal scene understandingalgorithms, applications and deep learning /
Multimodal scene understanding
algorithms, applications and deep learning /[electronic resource] :edited by Michael Ying Yang, Bodo Rosenhahn, Vittorio Murino. - London ;Academic Press,2019. - 1 online resource (ix, 412 p.) :ill. (some col.), maps
Includes bibliographical references and index.
Front Cover; Multimodal Scene Understanding; Copyright; Contents; List of Contributors; 1 Introduction to Multimodal Scene Understanding; 1.1 Introduction; 1.2 Organization of the Book; References; 2 Deep Learning for Multimodal Data Fusion; 2.1 Introduction; 2.2 Related Work; 2.3 Basics of Multimodal Deep Learning: VAEs and GANs; 2.3.1 Auto-Encoder; 2.3.2 Variational Auto-Encoder (VAE); 2.3.3 Generative Adversarial Network (GAN); 2.3.4 VAE-GAN; 2.3.5 Adversarial Auto-Encoder (AAE); 2.3.6 Adversarial Variational Bayes (AVB); 2.3.7 ALI and BiGAN
Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections - for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful.
ISBN: 9780128173596 (electronic bk.)Subjects--Topical Terms:
210824
Computational intelligence.
Index Terms--Genre/Form:
214472
Electronic books.
LC Class. No.: Q342 / .M85 2019
Dewey Class. No.: 006.3
Multimodal scene understandingalgorithms, applications and deep learning /
LDR
:04902cmm a2200313 a 4500
001
606331
006
m o d
007
cr cnu---unuuu
008
211206s2019 enkab ob 001 0 eng d
020
$a
9780128173596 (electronic bk.)
020
$a
0128173599 (electronic bk.)
020
$a
9780128173589 (electronic bk.)
020
$a
0128173580 (electronic bk.)
035
$a
on1109390062
040
$a
N
$b
eng
$e
pn
$c
N
$d
EBLCP
$d
N
$d
UKMGB
$d
OCLCF
$d
OPELS
$d
YDXIT
$d
UKAHL
$d
YDX
$d
OCLCQ
$d
OCL
$d
SFB
$d
OCLCQ
$d
SFB
$d
VT2
$d
OCLCQ
$d
OCLCO
041
0
$a
eng
050
4
$a
Q342
$b
.M85 2019
082
0 4
$a
006.3
$2
23
245
0 0
$a
Multimodal scene understanding
$h
[electronic resource] :
$b
algorithms, applications and deep learning /
$c
edited by Michael Ying Yang, Bodo Rosenhahn, Vittorio Murino.
260
$a
London ;
$a
San Diego, CA :
$b
Academic Press,
$c
2019.
300
$a
1 online resource (ix, 412 p.) :
$b
ill. (some col.), maps
504
$a
Includes bibliographical references and index.
505
0
$a
Front Cover; Multimodal Scene Understanding; Copyright; Contents; List of Contributors; 1 Introduction to Multimodal Scene Understanding; 1.1 Introduction; 1.2 Organization of the Book; References; 2 Deep Learning for Multimodal Data Fusion; 2.1 Introduction; 2.2 Related Work; 2.3 Basics of Multimodal Deep Learning: VAEs and GANs; 2.3.1 Auto-Encoder; 2.3.2 Variational Auto-Encoder (VAE); 2.3.3 Generative Adversarial Network (GAN); 2.3.4 VAE-GAN; 2.3.5 Adversarial Auto-Encoder (AAE); 2.3.6 Adversarial Variational Bayes (AVB); 2.3.7 ALI and BiGAN
505
8
$a
2.4 Multimodal Image-to-Image Translation Networks2.4.1 Pix2pix and Pix2pixHD; 2.4.2 CycleGAN, DiscoGAN, and DualGAN; 2.4.3 CoGAN; 2.4.4 UNIT; 2.4.5 Triangle GAN; 2.5 Multimodal Encoder-Decoder Networks; 2.5.1 Model Architecture; 2.5.2 Multitask Training; 2.5.3 Implementation Details; 2.6 Experiments; 2.6.1 Results on NYUDv2 Dataset; 2.6.2 Results on Cityscape Dataset; 2.6.3 Auxiliary Tasks; 2.7 Conclusion; References; 3 Multimodal Semantic Segmentation: Fusion of RGB and Depth Data in Convolutional Neural Networks; 3.1 Introduction; 3.2 Overview; 3.2.1 Image Classi cation and the VGG Network
505
8
$a
3.2.2 Architectures for Pixel-level Labeling3.2.3 Architectures for RGB and Depth Fusion; 3.2.4 Datasets and Benchmarks; 3.3 Methods; 3.3.1 Datasets and Data Splitting; 3.3.2 Preprocessing of the Stanford Dataset; 3.3.3 Preprocessing of the ISPRS Dataset; 3.3.4 One-channel Normal Label Representation; 3.3.5 Color Spaces for RGB and Depth Fusion; 3.3.6 Hyper-parameters and Training; 3.4 Results and Discussion; 3.4.1 Results and Discussion on the Stanford Dataset; 3.4.2 Results and Discussion on the ISPRS Dataset; 3.5 Conclusion; References
505
8
$a
4 Learning Convolutional Neural Networks for Object Detection with Very Little Training Data4.1 Introduction; 4.2 Fundamentals; 4.2.1 Types of Learning; 4.2.2 Convolutional Neural Networks; 4.2.2.1 Arti cial neuron; 4.2.2.2 Arti cial neural network; 4.2.2.3 Training; 4.2.2.4 Convolutional neural networks; 4.2.3 Random Forests; 4.2.3.1 Decision tree; 4.2.3.2 Random forest; 4.3 Related Work; 4.4 Traf c Sign Detection; 4.4.1 Feature Learning; 4.4.2 Random Forest Classi cation; 4.4.3 RF to NN Mapping; 4.4.4 Fully Convolutional Network; 4.4.5 Bounding Box Prediction; 4.5 Localization
505
8
$a
4.6 Clustering4.7 Dataset; 4.7.1 Data Capturing; 4.7.2 Filtering; 4.8 Experiments; 4.8.1 Training and Test Data; 4.8.2 Classi cation; 4.8.3 Object Detection; 4.8.4 Computation Time; 4.8.5 Precision of Localizations; 4.9 Conclusion; Acknowledgment; References; 5 Multimodal Fusion Architectures for Pedestrian Detection; 5.1 Introduction; 5.2 Related Work; 5.2.1 Visible Pedestrian Detection; 5.2.2 Infrared Pedestrian Detection; 5.2.3 Multimodal Pedestrian Detection; 5.3 Proposed Method; 5.3.1 Multimodal Feature Learning/Fusion; 5.3.2 Multimodal Pedestrian Detection; 5.3.2.1 Baseline DNN model
520
$a
Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections - for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful.
588
0
$a
Online resource; title from digital title page (viewed on October 10, 2019).
650
0
$a
Computational intelligence.
$3
210824
650
0
$a
Computer vision.
$3
200113
650
0
$a
Algorithms.
$3
184661
650
0
$a
Engineering.
$3
210888
650
0
$a
Artificial intelligence.
$3
194058
655
4
$a
Electronic books.
$2
local.
$3
214472
700
1
$a
Yang, Michael Ying.
$3
903150
700
1
$a
Rosenhahn, Bodo.
$3
274506
700
1
$a
Murino, Vittorio.
$3
577015
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128173589
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000203866
電子館藏
1圖書
電子書
EB Q342 .M85 2019 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://www.sciencedirect.com/science/book/9780128173589
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入