語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning in clinical neuroim...
~
(1998 :)
Machine learning in clinical neuroimaging4th International Workshop, MLCN 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning in clinical neuroimagingedited by Ahmed Abdulkadir ... [et al.].
其他題名:
4th International Workshop, MLCN 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
其他題名:
MLCN 2021
其他作者:
Abdulkadir, Ahmed.
團體作者:
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xi, 176 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Diagnostic imagingCongresses.Digital techniques
電子資源:
https://doi.org/10.1007/978-3-030-87586-2
ISBN:
9783030875862$q(electronic bk.)
Machine learning in clinical neuroimaging4th International Workshop, MLCN 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
Machine learning in clinical neuroimaging
4th International Workshop, MLCN 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /[electronic resource] :MLCN 2021edited by Ahmed Abdulkadir ... [et al.]. - Cham :Springer International Publishing :2021. - xi, 176 p. :ill., digital ;24 cm. - Lecture notes in computer science,130010302-9743 ;. - Lecture notes in computer science ;4891..
Computational Anatomy -- Unfolding the medial temporal lobe cortex to characterize neurodegeneration due to Alzheimer's disease pathology using ex vivo imaging -- Distinguishing Healthy Ageing from Dementia: a Biomechanical Simulation of Brain Atrophy using Deep Networks -- Towards Self-Explainable Classifiers and Regressors in Neuroimaging with Normalizing Flows -- Patch vs. global image-based unsupervised anomaly detection in MR brain scans of early Parkinsonian patients -- MRI image registration considerably improves CNN-based disease classification -- Dynamic Sub-graph Learning for Patch-based Cortical Folding Classification -- Detection of abnormal folding patterns with unsupervised deep generative models -- PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction -- Multi-Modal Brain Segmentation Using Hyper-Fused Convolutional Neural Network -- Robust Hydrocephalus Brain Segmentation via Globally and Locally Spatial Guidance -- Brain Networks and Time Series -- Geometric Deep Learning of the Human Connectome Project Multimodal Cortical Parcellation -- Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data -- Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling -- Structure-Function Mapping via Graph Neural Networks -- Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics of Functional Connectivity -- H3K27M Mutations Prediction for Brainstem Gliomas Based on Diffusion Radiomics Learning -- Constrained Learning of Task-related and Spatially-Coherent Dictionaries from Task fMRI Data.
This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.
ISBN: 9783030875862$q(electronic bk.)
Standard No.: 10.1007/978-3-030-87586-2doiSubjects--Topical Terms:
445235
Diagnostic imaging
--Digital techniques--Congresses.
LC Class. No.: Q325.5 / .M53 2021
Dewey Class. No.: 006.31
Machine learning in clinical neuroimaging4th International Workshop, MLCN 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
LDR
:03387nmm a2200373 a 4500
001
609389
003
DE-He213
005
20210922072911.0
006
m d
007
cr nn 008maaau
008
220222s2021 sz s 0 eng d
020
$a
9783030875862$q(electronic bk.)
020
$a
9783030875855$q(paper)
024
7
$a
10.1007/978-3-030-87586-2
$2
doi
035
$a
978-3-030-87586-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.M53 2021
072
7
$a
UYQV
$2
bicssc
072
7
$a
COM016000
$2
bisacsh
072
7
$a
UYQV
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M685 2021
111
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
245
1 0
$a
Machine learning in clinical neuroimaging
$h
[electronic resource] :
$b
4th International Workshop, MLCN 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings /
$c
edited by Ahmed Abdulkadir ... [et al.].
246
3
$a
MLCN 2021
246
3
$a
MICCAI 2021
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xi, 176 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
0302-9743 ;
$v
13001
490
1
$a
Image processing, computer vision, pattern recognition, and graphics
505
0
$a
Computational Anatomy -- Unfolding the medial temporal lobe cortex to characterize neurodegeneration due to Alzheimer's disease pathology using ex vivo imaging -- Distinguishing Healthy Ageing from Dementia: a Biomechanical Simulation of Brain Atrophy using Deep Networks -- Towards Self-Explainable Classifiers and Regressors in Neuroimaging with Normalizing Flows -- Patch vs. global image-based unsupervised anomaly detection in MR brain scans of early Parkinsonian patients -- MRI image registration considerably improves CNN-based disease classification -- Dynamic Sub-graph Learning for Patch-based Cortical Folding Classification -- Detection of abnormal folding patterns with unsupervised deep generative models -- PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction -- Multi-Modal Brain Segmentation Using Hyper-Fused Convolutional Neural Network -- Robust Hydrocephalus Brain Segmentation via Globally and Locally Spatial Guidance -- Brain Networks and Time Series -- Geometric Deep Learning of the Human Connectome Project Multimodal Cortical Parcellation -- Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data -- Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling -- Structure-Function Mapping via Graph Neural Networks -- Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics of Functional Connectivity -- H3K27M Mutations Prediction for Brainstem Gliomas Based on Diffusion Radiomics Learning -- Constrained Learning of Task-related and Spatially-Coherent Dictionaries from Task fMRI Data.
520
$a
This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.
650
0
$a
Diagnostic imaging
$x
Digital techniques
$v
Congresses.
$3
445235
650
0
$a
Machine learning
$v
Congresses.
$3
384498
650
0
$a
Electronic data processing
$x
Distributed processing
$v
Congresses.
$3
384493
650
1 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
274492
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Bioinformatics.
$3
194415
700
1
$a
Abdulkadir, Ahmed.
$3
906923
710
2
$a
SpringerLink (Online service)
$3
273601
711
2
$n
(3rd :
$d
1998 :
$c
Amsterdam, Netherlands)
$3
194767
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in computer science ;
$v
4891.
$3
383229
830
0
$a
Image processing, computer vision, pattern recognition, and graphics.
$3
823073
856
4 0
$u
https://doi.org/10.1007/978-3-030-87586-2
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000205970
電子館藏
1圖書
電子書
EB Q325.5 .M685 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-87586-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入