語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Spatially explicit hyperparameter op...
~
SpringerLink (Online service)
Spatially explicit hyperparameter optimization for neural networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Spatially explicit hyperparameter optimization for neural networksby Minrui Zheng.
作者:
Zheng, Minrui.
出版者:
Singapore :Springer Singapore :2021.
面頁冊數:
xix, 108 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Neural networks (Computer science)
電子資源:
https://doi.org/10.1007/978-981-16-5399-5
ISBN:
9789811653995$q(electronic bk.)
Spatially explicit hyperparameter optimization for neural networks
Zheng, Minrui.
Spatially explicit hyperparameter optimization for neural networks
[electronic resource] /by Minrui Zheng. - Singapore :Springer Singapore :2021. - xix, 108 p. :ill., digital ;24 cm.
Chapter 1: Introduction -- Chapter 2: Literature Review -- Chapter 3: Methodology -- Chapter 4: Study I. Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing -- Chapter 5: Study II. Spatially explicit hyperparameter optimization of neural networks accelerated using high-performance computing -- Chapter 6: Study III. An integration of spatially explicit hyperparameter optimization with convolutional neural networks-based spatial models.
Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is written for researchers of the GIScience field as well as social science subjects.
ISBN: 9789811653995$q(electronic bk.)
Standard No.: 10.1007/978-981-16-5399-5doiSubjects--Topical Terms:
181982
Neural networks (Computer science)
LC Class. No.: QA76.87 / .Z44 2021
Dewey Class. No.: 006.32
Spatially explicit hyperparameter optimization for neural networks
LDR
:02569nmm a2200325 a 4500
001
610560
003
DE-He213
005
20211018115807.0
006
m d
007
cr nn 008maaau
008
220330s2021 si s 0 eng d
020
$a
9789811653995$q(electronic bk.)
020
$a
9789811653988$q(paper)
024
7
$a
10.1007/978-981-16-5399-5
$2
doi
035
$a
978-981-16-5399-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.Z44 2021
072
7
$a
UB
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UB
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.Z63 2021
100
1
$a
Zheng, Minrui.
$3
908578
245
1 0
$a
Spatially explicit hyperparameter optimization for neural networks
$h
[electronic resource] /
$c
by Minrui Zheng.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
xix, 108 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction -- Chapter 2: Literature Review -- Chapter 3: Methodology -- Chapter 4: Study I. Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing -- Chapter 5: Study II. Spatially explicit hyperparameter optimization of neural networks accelerated using high-performance computing -- Chapter 6: Study III. An integration of spatially explicit hyperparameter optimization with convolutional neural networks-based spatial models.
520
$a
Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is written for researchers of the GIScience field as well as social science subjects.
650
0
$a
Neural networks (Computer science)
$3
181982
650
0
$a
Mathematical optimization.
$3
183292
650
1 4
$a
Computer Applications.
$3
273760
650
2 4
$a
Geography, general.
$3
730920
650
2 4
$a
Artificial Intelligence.
$3
212515
650
2 4
$a
Environmental Policy.
$3
732889
650
2 4
$a
Sociology, general.
$3
557597
650
2 4
$a
Economic Geography.
$3
274590
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-16-5399-5
950
$a
Earth and Environmental Science (SpringerNature-11646)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000206871
電子館藏
1圖書
電子書
EB QA76.87 .Z63 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-16-5399-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入