語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Dynamically coupled rigid body-fluid...
~
Shashikanth, Banavara N.
Dynamically coupled rigid body-fluid flow systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Dynamically coupled rigid body-fluid flow systemsby Banavara N. Shashikanth.
作者:
Shashikanth, Banavara N.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
x, 187 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Fluid dynamics.
電子資源:
https://doi.org/10.1007/978-3-030-82646-8
ISBN:
9783030826468$q(electronic bk.)
Dynamically coupled rigid body-fluid flow systems
Shashikanth, Banavara N.
Dynamically coupled rigid body-fluid flow systems
[electronic resource] /by Banavara N. Shashikanth. - Cham :Springer International Publishing :2021. - x, 187 p. :ill. (some col.), digital ;24 cm.
Kirchhoff's insufficiently-celebrated equations of motion -- The addition of vortices -- Dynamically-coupled rigid body+point vortices in R2 -- Dynamically coupled rigid body+vortex rings in R3 -- Viscous effects and their modeling -- Miscellaneous extensions -- References -- A brief introduction to geometric mechanics -- Leading order behavior of the velocity field and vector potential field of a curved vortex filament -- Hamiltonian function and vector field in the half-space model for Np = 2.
This book presents a unified study of dynamically coupled systems involving a rigid body and an ideal fluid flow from the perspective of Lagrangian and Hamiltonian mechanics. It compiles theoretical investigations on the topic of dynamically coupled systems using a framework grounded in Kirchhoff's equations. The text achieves a balance between geometric mechanics, or the modern theories of reduction of Lagrangian and Hamiltonian systems, and classical fluid mechanics, with a special focus on the applications of these principles. Following an introduction to Kirchhoff's equations of motion, the book discusses several extensions of Kirchhoff's work, particularly related to vortices. It addresses the equations of motions of these systems and their Lagrangian and Hamiltonian formulations. The book is suitable to mathematicians, physicists and engineers with a background in Lagrangian and Hamiltonian mechanics and theoretical fluid mechanics. It includes a brief introductory overview of geometric mechanics in the appendix.
ISBN: 9783030826468$q(electronic bk.)
Standard No.: 10.1007/978-3-030-82646-8doiSubjects--Topical Terms:
186085
Fluid dynamics.
LC Class. No.: TA357 / .S53 2021
Dewey Class. No.: 620.106
Dynamically coupled rigid body-fluid flow systems
LDR
:02523nmm a2200325 a 4500
001
610830
003
DE-He213
005
20211028213146.0
006
m d
007
cr nn 008maaau
008
220330s2021 sz s 0 eng d
020
$a
9783030826468$q(electronic bk.)
020
$a
9783030826451$q(paper)
024
7
$a
10.1007/978-3-030-82646-8
$2
doi
035
$a
978-3-030-82646-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA357
$b
.S53 2021
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHU
$2
thema
082
0 4
$a
620.106
$2
23
090
$a
TA357
$b
.S532 2021
100
1
$a
Shashikanth, Banavara N.
$3
909039
245
1 0
$a
Dynamically coupled rigid body-fluid flow systems
$h
[electronic resource] /
$c
by Banavara N. Shashikanth.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
x, 187 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Kirchhoff's insufficiently-celebrated equations of motion -- The addition of vortices -- Dynamically-coupled rigid body+point vortices in R2 -- Dynamically coupled rigid body+vortex rings in R3 -- Viscous effects and their modeling -- Miscellaneous extensions -- References -- A brief introduction to geometric mechanics -- Leading order behavior of the velocity field and vector potential field of a curved vortex filament -- Hamiltonian function and vector field in the half-space model for Np = 2.
520
$a
This book presents a unified study of dynamically coupled systems involving a rigid body and an ideal fluid flow from the perspective of Lagrangian and Hamiltonian mechanics. It compiles theoretical investigations on the topic of dynamically coupled systems using a framework grounded in Kirchhoff's equations. The text achieves a balance between geometric mechanics, or the modern theories of reduction of Lagrangian and Hamiltonian systems, and classical fluid mechanics, with a special focus on the applications of these principles. Following an introduction to Kirchhoff's equations of motion, the book discusses several extensions of Kirchhoff's work, particularly related to vortices. It addresses the equations of motions of these systems and their Lagrangian and Hamiltonian formulations. The book is suitable to mathematicians, physicists and engineers with a background in Lagrangian and Hamiltonian mechanics and theoretical fluid mechanics. It includes a brief introductory overview of geometric mechanics in the appendix.
650
0
$a
Fluid dynamics.
$3
186085
650
0
$a
Differentiable dynamical systems.
$3
183764
650
1 4
$a
Mathematical Physics.
$3
522725
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
522718
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-82646-8
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000207141
電子館藏
1圖書
電子書
EB TA357 .S532 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-82646-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入