語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Randomness and elements of decision ...
~
Borda, Monica.
Randomness and elements of decision theory applied to signals
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Randomness and elements of decision theory applied to signalsby Monica Borda ... [et al.].
其他作者:
Borda, Monica.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xvii, 242 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Decision making.
電子資源:
https://doi.org/10.1007/978-3-030-90314-5
ISBN:
9783030903145$q(electronic bk.)
Randomness and elements of decision theory applied to signals
Randomness and elements of decision theory applied to signals
[electronic resource] /by Monica Borda ... [et al.]. - Cham :Springer International Publishing :2021. - xvii, 242 p. :ill. (some col.), digital ;24 cm.
Introduction in Matlab -- Random variables -- Probability distributions -- Joint random variables -- Random processes -- Binary pseudo-noise sequence generator -- Markov processes -- Noise in telecommunication systems -- Decision systems in noisy transmission channels -- Audio signals denoising using Independent Component Analysis -- Texture classification based on statistical models -- Histogram equalization -- PCM and DPCM -- NN and kNN supervised classification algorithms -- Supervised deep learning classification algorithms -- Texture feature extraction and classification using the Local Binary Patterns operator.
This book offers an overview on the main modern important topics in random variables, random processes, and decision theory for solving real-world problems. After an introduction to concepts of statistics and signals, the book introduces many essential applications to signal processing like denoising, texture classification, histogram equalization, deep learning, or feature extraction. The book uses MATLAB algorithms to demonstrate the implementation of the theory to real systems. This makes the contents of the book relevant to students and professionals who need a quick introduction but practical introduction how to deal with random signals and processes.
ISBN: 9783030903145$q(electronic bk.)
Standard No.: 10.1007/978-3-030-90314-5doiSubjects--Topical Terms:
183849
Decision making.
LC Class. No.: QA279.4
Dewey Class. No.: 519.542
Randomness and elements of decision theory applied to signals
LDR
:02316nmm a2200337 a 4500
001
612456
003
DE-He213
005
20211210112058.0
006
m d
007
cr nn 008maaau
008
220526s2021 sz s 0 eng d
020
$a
9783030903145$q(electronic bk.)
020
$a
9783030903138$q(paper)
024
7
$a
10.1007/978-3-030-90314-5
$2
doi
035
$a
978-3-030-90314-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA279.4
072
7
$a
UYAM
$2
bicssc
072
7
$a
COM077000
$2
bisacsh
072
7
$a
UYAM
$2
thema
072
7
$a
UFM
$2
thema
082
0 4
$a
519.542
$2
23
090
$a
QA279.4
$b
.R194 2021
245
0 0
$a
Randomness and elements of decision theory applied to signals
$h
[electronic resource] /
$c
by Monica Borda ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xvii, 242 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Introduction in Matlab -- Random variables -- Probability distributions -- Joint random variables -- Random processes -- Binary pseudo-noise sequence generator -- Markov processes -- Noise in telecommunication systems -- Decision systems in noisy transmission channels -- Audio signals denoising using Independent Component Analysis -- Texture classification based on statistical models -- Histogram equalization -- PCM and DPCM -- NN and kNN supervised classification algorithms -- Supervised deep learning classification algorithms -- Texture feature extraction and classification using the Local Binary Patterns operator.
520
$a
This book offers an overview on the main modern important topics in random variables, random processes, and decision theory for solving real-world problems. After an introduction to concepts of statistics and signals, the book introduces many essential applications to signal processing like denoising, texture classification, histogram equalization, deep learning, or feature extraction. The book uses MATLAB algorithms to demonstrate the implementation of the theory to real systems. This makes the contents of the book relevant to students and professionals who need a quick introduction but practical introduction how to deal with random signals and processes.
650
0
$a
Decision making.
$3
183849
650
0
$a
Random variables.
$3
199057
650
0
$a
Signal processing
$x
Mathematics.
$3
183873
650
1 4
$a
Probability and Statistics in Computer Science.
$3
274053
650
2 4
$a
Operations Research/Decision Theory.
$3
273963
650
2 4
$a
Signal, Image and Speech Processing.
$3
273768
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
348605
700
1
$a
Borda, Monica.
$3
522522
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-90314-5
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000207930
電子館藏
1圖書
電子書
EB QA279.4 .R194 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-90314-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入