語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hamilton's principle in continuum me...
~
Bedford, A.
Hamilton's principle in continuum mechanics
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Hamilton's principle in continuum mechanicsby Anthony Bedford.
作者:
Bedford, A.
出版者:
Cham :Springer International Publishing :2021.
面頁冊數:
xiv, 104 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Continuum mechanics.
電子資源:
https://doi.org/10.1007/978-3-030-90306-0
ISBN:
9783030903060$q(electronic bk.)
Hamilton's principle in continuum mechanics
Bedford, A.
Hamilton's principle in continuum mechanics
[electronic resource] /by Anthony Bedford. - Cham :Springer International Publishing :2021. - xiv, 104 p. :ill., digital ;24 cm.
Mechanics of Systems of Particles -- Mathematical Preliminaries -- Mechanics of Continuous Media -- Motions and Comparison Motions of a Mixture -- Singular Surfaces -- Index.
This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton's principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton's principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces. Presents a comprehensive, rigorous description of the application of Hamilton's principle to continuous media; Includes recent applications of the principle to continua with microstructure, mixtures, and media with surfaces of discontinuity; Discusses foundations of continuum mechanics and variational methods therein in the context of linear vector spaces.
ISBN: 9783030903060$q(electronic bk.)
Standard No.: 10.1007/978-3-030-90306-0doiSubjects--Personal Names:
910958
Hamilton, William Rowan,
Sir,1805-1865.Subjects--Topical Terms:
190274
Continuum mechanics.
LC Class. No.: QA808.2 / .H36 2021
Dewey Class. No.: 531
Hamilton's principle in continuum mechanics
LDR
:02320nmm a2200325 a 4500
001
612460
003
DE-He213
005
20211214083431.0
006
m d
007
cr nn 008maaau
008
220526s2021 sz s 0 eng d
020
$a
9783030903060$q(electronic bk.)
020
$a
9783030903053$q(paper)
024
7
$a
10.1007/978-3-030-90306-0
$2
doi
035
$a
978-3-030-90306-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA808.2
$b
.H36 2021
072
7
$a
PHD
$2
bicssc
072
7
$a
SCI041000
$2
bisacsh
072
7
$a
PHD
$2
thema
082
0 4
$a
531
$2
23
090
$a
QA808.2
$b
.B411 2021
100
1
$a
Bedford, A.
$3
910957
245
1 0
$a
Hamilton's principle in continuum mechanics
$h
[electronic resource] /
$c
by Anthony Bedford.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xiv, 104 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Mechanics of Systems of Particles -- Mathematical Preliminaries -- Mechanics of Continuous Media -- Motions and Comparison Motions of a Mixture -- Singular Surfaces -- Index.
520
$a
This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton's principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton's principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces. Presents a comprehensive, rigorous description of the application of Hamilton's principle to continuous media; Includes recent applications of the principle to continua with microstructure, mixtures, and media with surfaces of discontinuity; Discusses foundations of continuum mechanics and variational methods therein in the context of linear vector spaces.
600
1 0
$a
Hamilton, William Rowan,
$c
Sir,
$d
1805-1865.
$3
910958
650
0
$a
Continuum mechanics.
$3
190274
650
1 4
$a
Classical and Continuum Physics.
$3
771188
650
2 4
$a
Optimization.
$3
274084
650
2 4
$a
Algebra.
$3
188312
650
2 4
$a
Mechanical Engineering.
$3
273894
650
2 4
$a
Mathematical Physics.
$3
522725
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-90306-0
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000207934
電子館藏
1圖書
電子書
EB QA808.2 .B411 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-3-030-90306-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入