語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical mechanics of neural networks
~
Huang, Haiping.
Statistical mechanics of neural networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistical mechanics of neural networksby Haiping Huang.
作者:
Huang, Haiping.
出版者:
Singapore :Springer Singapore :2021.
面頁冊數:
xviii, 296 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Neural networks (Computer science)Statistical methods.
電子資源:
https://doi.org/10.1007/978-981-16-7570-6
ISBN:
9789811675706$q(electronic bk.)
Statistical mechanics of neural networks
Huang, Haiping.
Statistical mechanics of neural networks
[electronic resource] /by Haiping Huang. - Singapore :Springer Singapore :2021. - xviii, 296 p. :ill., digital ;24 cm.
Introduction -- Spin glass models and cavity method -- Variational mean-field theory and belief propagation -- Monte Carlo simulation methods -- High-temperature expansion -- Nishimori line -- Random energy model -- Statistical mechanical theory of Hopfield model -- Replica symmetry and replica symmetry breaking -- Statistical mechanics of restricted Boltzmann machine -- Simplest model of unsupervised learning with binary synapses -- Inherent-symmetry breaking in unsupervised learning -- Mean-field theory of Ising Perceptron -- Mean-field model of multi-layered Perceptron -- Mean-field theory of dimension reduction -- Chaos theory of random recurrent neural networks -- Statistical mechanics of random matrices -- Perspectives.
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
ISBN: 9789811675706$q(electronic bk.)
Standard No.: 10.1007/978-981-16-7570-6doiSubjects--Topical Terms:
910972
Neural networks (Computer science)
--Statistical methods.
LC Class. No.: QA76.87 / .H83 2021
Dewey Class. No.: 006.32
Statistical mechanics of neural networks
LDR
:02616nmm a2200325 a 4500
001
612472
003
DE-He213
005
20220104014709.0
006
m d
007
cr nn 008maaau
008
220526s2021 si s 0 eng d
020
$a
9789811675706$q(electronic bk.)
020
$a
9789811675690$q(paper)
024
7
$a
10.1007/978-981-16-7570-6
$2
doi
035
$a
978-981-16-7570-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.H83 2021
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
072
7
$a
PHU
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.H874 2021
100
1
$a
Huang, Haiping.
$3
910971
245
1 0
$a
Statistical mechanics of neural networks
$h
[electronic resource] /
$c
by Haiping Huang.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
xviii, 296 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Spin glass models and cavity method -- Variational mean-field theory and belief propagation -- Monte Carlo simulation methods -- High-temperature expansion -- Nishimori line -- Random energy model -- Statistical mechanical theory of Hopfield model -- Replica symmetry and replica symmetry breaking -- Statistical mechanics of restricted Boltzmann machine -- Simplest model of unsupervised learning with binary synapses -- Inherent-symmetry breaking in unsupervised learning -- Mean-field theory of Ising Perceptron -- Mean-field model of multi-layered Perceptron -- Mean-field theory of dimension reduction -- Chaos theory of random recurrent neural networks -- Statistical mechanics of random matrices -- Perspectives.
520
$a
This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
650
0
$a
Neural networks (Computer science)
$x
Statistical methods.
$3
910972
650
1 4
$a
Theoretical, Mathematical and Computational Physics.
$3
376743
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
567118
650
2 4
$a
Theoretical and Computational Chemistry.
$3
273882
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence.
$3
212515
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-16-7570-6
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000207946
電子館藏
1圖書
電子書
EB QA76.87 .H874 2021 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://doi.org/10.1007/978-981-16-7570-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入